Asymptotic analysis of singularly perturbed elliptic functionals

Roberta Marziani WWU Westfälische Wilhelms-Universität Münster

joint work with Annika Bach (Munich) and Caterina Ida Zeppieri (Münster)

Winterschool on Analysis and Applied Mathematics, Münster 22-26 February 2021

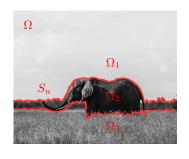
The Mumford-Shah functional and the problem of image-segmentation

Let $\Omega \subset \mathbb{R}^2$ be the image domain and $g \colon \Omega \to \mathbb{R}$ be a grey-scale image.

- P. Compute a an optimal partition $\Omega_1,...,\Omega_n$ of Ω and $u\colon \Omega \to \mathbb{R}$ such that u is smooth in Ω_i i=1,...,n, it jumps on $S_u = (\partial \Omega_1 \cup ... \cup \partial \Omega_n) \cap \Omega$ and approximates g.
- A. Minimize the functional

$$\underbrace{\int_{\Omega} \alpha |\nabla u|^2 dx + \beta \mathcal{H}^1(S_u)}_{\mathbf{MS}(u)} + \underbrace{\int_{\Omega} |u-g|^2 dx}_{\text{fidelity term}}$$

over all $u \in SBV(\Omega)$.

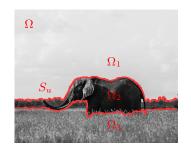


The Mumford-Shah functional and the problem of image-segmentation

Let $\Omega \subset \mathbb{R}^2$ be the image domain and $g \colon \Omega \to \mathbb{R}$ be a grey-scale image.

- **P.** Compute a an optimal partition $\Omega_1,...,\Omega_n$ of Ω and $u\colon\Omega\to\mathbb{R}$ such that u is smooth in Ω_i i=1,...,n, it jumps on $S_u=(\partial\Omega_1\cup...\cup\partial\Omega_n)\cap\Omega$ and approximates g.
- A. Minimize the functional

$$\underbrace{\int_{\Omega} \alpha |\nabla u|^2 dx + \beta \mathcal{H}^1(S_u)}_{\mathbf{MS}(u)} + \underbrace{\int_{\Omega} |u-g|^2 dx}_{\text{fidelity term}}$$



over all $u \in SBV(\Omega)$.

A regularisation of $\overline{\text{MS}}$ in terms of Γ -convergence is given by the Ambrosio-Tortorelli functional, i.e.,

$$\mathbf{AT}_{\varepsilon}(u,v) := \underbrace{\int_{\Omega} \alpha v^2 |\nabla u|^2 dx}_{\text{bulk term}} + \underbrace{\int_{\Omega} \frac{\beta}{2} \left(\frac{(1-v)^2}{\varepsilon} + \varepsilon |\nabla v|^2 \right) dx}_{\text{surface term}}$$

with $u, v \in W^{1,2}(\Omega)$.

Brittle energies in Fracture Mechanics

Besides image segmentation, the Mumford-Shah functional describes the so called *brittle energy* in Theory of Fracture Mechanics.

The brittle energy is the energy necessary to the production of a crack:

$$\mathcal{E}(u) = \underbrace{\int_{\Omega} W(\nabla u) dx}_{\text{elastic energy}} + \underbrace{\lambda \mathcal{H}^2(S_u)}_{\text{surface term}}$$

where $\Omega \subset \mathbb{R}^3$ and $u \in SBV(\Omega; \mathbb{R}^3)$ denotes the deformation. A feature of $\mathcal E$ is that it does not depend on the jump opening

$$[u] = u^+ - u^-.$$

Brittle energies in Fracture Mechanics

Besides image segmentation, the Mumford-Shah functional describes the so called *brittle energy* in Theory of Fracture Mechanics.

The brittle energy is the energy necessary to the production of a crack:

$$\mathcal{E}(u) = \underbrace{\int_{\Omega} W(\nabla u) dx}_{\text{elastic energy}} + \underbrace{\lambda \mathcal{H}^2(S_u)}_{\text{surface term}}$$

where $\Omega \subset \mathbb{R}^3$ and $u \in SBV(\Omega; \mathbb{R}^3)$ denotes the deformation. A feature of $\mathcal E$ is that it does not depend on the jump opening

$$[u] = u^+ - u^-.$$

More in general

$$\mathcal{E}(u) = \underbrace{\int_{\Omega} W(x, \nabla u) dx}_{\text{elastic energy}} + \underbrace{\int_{S_u} \varphi(x, \nu_u) d\mathcal{H}^2}_{\text{surface term}}.$$

Approximation of brittle energies with elliptic functionals

Aim: Study the Γ-convergence of $\mathcal{F}_{\varepsilon}$ satisfying

$$C_1 \mathbf{AT}_{\varepsilon}(u, v) \le \mathcal{F}_{\varepsilon}(u, v) \le C_2 \mathbf{AT}_{\varepsilon}(u, v)$$

where

$$\mathsf{AT}_{\varepsilon}(u,v) := \underbrace{\int_{\Omega} \psi(v) |\nabla u|^p dx}_{\text{bulk term}} + \underbrace{\int_{\Omega} \left(\frac{(1-v)^p}{\varepsilon} + \varepsilon^{p-1} |\nabla v|^p \right) dx}_{\text{surface term}}$$

$$\Omega\subset\mathbb{R}^n\text{, }(u,v)\in W^{1,p}(\Omega;\mathbb{R}^m)\times W^{1,p}(\Omega)\text{, }\textcolor{red}{p}>1\text{ and }\textcolor{red}{\psi}\colon\mathbb{R}\to[0,+\infty)\text{,}$$
 increasing on $[0,+\infty)$, decreasing on $(-\infty,0)$, $\textcolor{red}{\psi}(1)=1$, $\textcolor{red}{\psi}(0)=0$.

Approximation of brittle energies with elliptic functionals

Aim: Study the Γ-convergence of $\mathcal{F}_{\varepsilon}$ satisfying

$$C_1 \mathsf{AT}_{\varepsilon}(u,v) \le \mathcal{F}_{\varepsilon}(u,v) \le C_2 \mathsf{AT}_{\varepsilon}(u,v)$$

where

$$\mathsf{AT}_{\varepsilon}(u,v) := \underbrace{\int_{\Omega} \psi(v) |\nabla u|^p dx}_{\text{bulk term}} + \underbrace{\int_{\Omega} \left(\frac{(1-v)^p}{\varepsilon} + \varepsilon^{p-1} |\nabla v|^p \right) dx}_{\text{surface term}}$$

 $\Omega\subset\mathbb{R}^n\text{, }(u,v)\in W^{1,p}(\Omega;\mathbb{R}^m)\times W^{1,p}(\Omega)\text{, }\textcolor{red}{p}>1\text{ and }\textcolor{red}{\psi}\colon\mathbb{R}\to[0,+\infty)\text{,}$ increasing on $[0,+\infty)$, decreasing on $(-\infty,0)$, $\textcolor{red}{\psi}(1)=1$, $\textcolor{red}{\psi}(0)=0$.

More precisely

$$\mathcal{F}_{\varepsilon}(u,v) := \underbrace{\int_{\Omega} \pmb{\psi(v)} f_{\varepsilon}(x,\nabla u) dx}_{\text{bulk term}} + \underbrace{\frac{1}{\varepsilon} \int_{\Omega} g_{\varepsilon}(x,v,\varepsilon \nabla v) dx}_{\text{surface term}},$$

with

$$c_1|\xi|^p \le f_{\varepsilon}(x,\xi) \le c_2|\xi|^p$$
 for all $(x,\xi) \in \mathbb{R}^n \times \mathbb{R}^{m \times n}$,

$$c_3(|1-v|^p+|w|^p)\leq g_\varepsilon(x,v,w)\leq c_4(|1-v|^p+|w|^p)\quad\text{for all}\quad (x,v,w)\in\mathbb{R}^n\times\mathbb{R}\times\mathbb{R}^n.$$

Ļ

Γ -convergence result

Theorem (Bach, M., Zeppieri (2021))

For suitable integrands f_{ε} and g_{ε} let

$$\mathcal{F}_{\varepsilon}(u,v,\Omega):=\int_{\Omega} \pmb{\psi(v)} f_{\varepsilon}(x,\nabla u) dx + \frac{1}{\varepsilon} \int_{\Omega} g_{\varepsilon}(x,v,\varepsilon \nabla v) dx.$$

Then (u.t.s.) the functionals $\mathcal{F}_{\varepsilon}(\cdot,\cdot,\Omega)$ Γ -converge to

$$\mathcal{F}(u, v, \Omega) := \int_{\Omega} f_{\infty}(x, \nabla u) dx + \int_{S_u \cap \Omega} g_{\infty}(x, [\mathbf{u}], \nu_u) d\mathcal{H}^n$$

with $u \in GSBV^p(\Omega; \mathbb{R}^m), v = 1$ a.e. in Ω and $f_\infty \colon \mathbb{R}^n \times \mathbb{R}^{m \times n} \to [0, +\infty)$ and $g_\infty \colon \mathbb{R}^n \times \mathbb{S}^{n-1} \to [0, +\infty)$ are Borel functions.

Tools:

- Localisation method;
- Integral representation (Bouchittè, Fonseca, Leoni, and Mascarenhas, 2002).

Γ -convergence result

Theorem (Bach, M., Zeppieri (2021))

For suitable integrands f_{ε} and g_{ε} let

$$\mathcal{F}_{\varepsilon}(u,v,\Omega):=\int_{\Omega} \pmb{\psi(v)} f_{\varepsilon}(x,\nabla u) dx + \frac{1}{\varepsilon} \int_{\Omega} g_{\varepsilon}(x,v,\varepsilon \nabla v) dx.$$

Then (u.t.s.) the functionals $\mathcal{F}_{\varepsilon}(\cdot,\cdot,\Omega)$ Γ -converge to

$$\mathcal{F}(u, v, \Omega) := \int_{\Omega} f_{\infty}(x, \nabla u) dx + \int_{S_u \cap \Omega} g_{\infty}(x, \nu_u) d\mathcal{H}^n$$

with $u \in GSBV^p(\Omega; \mathbb{R}^m), v = 1$ a.e. in Ω and $f_\infty \colon \mathbb{R}^n \times \mathbb{R}^{m \times n} \to [0, +\infty)$ and $g_\infty \colon \mathbb{R}^n \times \mathbb{S}^{n-1} \to [0, +\infty)$ are Borel functions.

Tools:

- Localisation method;
- Integral representation (Bouchittè, Fonseca, Leoni, and Mascarenhas, 2002).

Characterization of f_{∞} and g_{∞}

$$\mathcal{F}(u, v, \Omega) := \int_{\Omega} f_{\infty}(x, \nabla u) dx + \int_{S_u \cap \Omega} g_{\infty}(x, \nu_u) d\mathcal{H}^n$$

 g_{∞} does not depend on the jump opening [u], that means \mathcal{F} is a *brittle energy*. This is one of the effects of the volume-surface decoupling. We show in fact that f_{∞} and g_{∞} are obtained by

$$f_{\infty}(x,\xi) = \limsup_{\rho \to 0} \lim_{\varepsilon \to 0} \frac{1}{\rho^n} \left(\inf \int_{Q_{\rho}(x)} f_{\varepsilon}(x,\nabla u) dx \right)$$

where the infimum is taken over all functions $u \in W^{1,p}(Q_{\rho}(x);\mathbb{R}^m)$ with $u(x) = \xi x$ near $\partial Q_{\rho}(x)$;

$$g_{\infty}(x,\nu) = \limsup_{\rho \to 0} \lim_{\varepsilon \to 0} \frac{1}{\rho^{n-1}} \left(\inf \frac{1}{\varepsilon} \int_{Q_{\rho}^{\nu}(x)} g_{\varepsilon}(x,v,\varepsilon \nabla v) dx \right)$$

where the infimum is taken among all $v\in W^{1,p}(Q^\nu_\rho(x))$, with $0\leq v\leq 1$, for which there exists $u\in W^{1,p}(Q^\nu_\rho(x);\mathbb{R}^m)$ such that $v\nabla u=0$ a.e. in $Q^\nu_\rho(x)$ and $(u,v)=(u^\nu_x,1)$ near $\partial Q^\nu_\rho(x)\cap\{|(y-x)\cdot\nu|>\varepsilon\}$ where u^ν_x is the jump function given by

$$u_x^{\nu}(y) = \begin{cases} e_1 & \text{if } (y-x) \cdot \nu \ge 0, \\ 0 & \text{if } (y-x) \cdot \nu < 0. \end{cases}$$

An application to homogenisation of damage models

Our analysis applies to the case of homogenisation of damage models, where

$$f_{\varepsilon}(x,\xi) = f\left(\frac{x}{\varepsilon},\xi\right) \quad \text{and} \quad g_{\varepsilon}(x,v,w) = g\left(\frac{x}{\varepsilon},v,w\right). \tag{1}$$

In particular if the two limits

$$\lim_{r \to +\infty} \frac{1}{r^n} \left(\inf \int_{Q_r(rx)} f(x, \nabla u) dx \right) =: f_{hom}(\xi),$$

$$\lim_{r \to +\infty} \frac{1}{r^{n-1}} \left(\inf \int_{Q_r^{\nu}(rx)} g(x, v, \nabla v) dx \right) =: g_{hom}(\nu)$$

where the infimum are taken in suitable classes of functions similar to that chosen for f_{∞} and g_{∞} , exist and are independent of x, then the Γ -limit of $\mathcal{F}_{\varepsilon}(\cdot\,,\cdot\,,\Omega)$ with f_{ε} and g_{ε} as in (1) is given by

$$\mathcal{F}_{hom}(u, v, \Omega) := \int_{\Omega} f_{hom}(\nabla u) dx + \int_{S_u} g_{hom}(\nu_u) d\mathcal{H}^{n-1}$$

with $u \in GSBV^p(\Omega; \mathbb{R}^m), v = 1$ a.e. in Ω .

Bach, A., Marziani, R., Zeppieri, C., I., Γ -convergence and stochastic homogenisation of singularly perturbed elliptic functionals. Submitted, (2021).