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Partial Differential Equations (PDE)

Definition
For a differential operator L which allocates a function u :Ω→R,
Ω⊆Rd , to

L[u] : Rd → R ,

u 7→ F
(

x ,u(x), . . . ,Dαu(x)
)
,

α multiindizes, 1≤|α|≤k , k ∈N, and Dα := ∂α1 ···∂αn

∂|α| the equation

L[u] = f (x) , f : Rd→R , x ∈Ω , (1)

is called partial differential equation (in d variables) of order k .
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Partial Differential Equations

Definion
A PDE is called

linear if F is linear in u and in all Dαu, 1≤α≤k ,
semilinear if F is linear in Dαu, |α|=k , and
homogeneous if f ≡0.

Definition
A PDE of the form (1) is called well posed if

it exists a solution u,
the solution is unique and
the solution depends continuously on the addition condi-
tions.
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Partial Differential Equations

Remark
There is no general procedual method for the computation of
numerical solutions of alls PDEs.

Conclusion
A classification is necessary

Classification
In general the equations are classified in elliptic, parabolic and
hyperbolic PDEs.

Remark
The nomenclature is arised from the cone sections .
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Classification of Linear PDEs

Linear PDEs in R2 of Order 2
In the following we consider equations of the form

2∑
i,k=1

Aikuxi xk +
2∑

i=1

Biuxi + Cu = D . (2)

For the classification only the coefficients of the highest deriva-
tives will be examined.

Definition
A PDE of the form (2) is called

elliptic if 4A11A22−A2
12>0 ,

parabolic if 4A11A22−A2
12 =0 and

hyperbolic if 4A11A22−A2
12<0 .

Michael Blume Numerics of Partial Differential Equations



Partial Differential Equations
Example of Use

Finite Difference Methods

Definition
Classification
Initial and Boundary Conditions

Classification of Linear PDEs

Remark
For more general PDEs the classification is defined by the
eigenvalues of the coeffizient matrix.
PDEs of order 1 are hyperbolic.
The classification has in general only a local behavior.

Example for Local Classification
The equation uxx +uuyy =0 is in x ∈Ω,

u(x)>0 elliptic,
u(x)=0 parabolic and
u(x)<0 hyperbolic.
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Typical Examples

Laplace-Equation (elliptic, homogeneous, linear, order 2)

uxx +uyy =0 , (x , y)∈Ω⊆R2 .

Heat-Equation (parabolic, homogeneous, linear, order 2)

ut−uxx =0 , (x , t)∈ [x0, xf ]×[t0, tf ] , tf ∈(t0,∞] .

Wave-Equation (hyperbolic, inhomogeneous, linear, order 2)

utt−c2uxx = f , (x , t)∈ [x0, xf ]×[t0, tf ] .
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Initial and Boundary Conditions

Remark
A PDE has per se in general multiple solutions.
For an unique solution additional conditions are necessary.

Samples of Boundary Conditions (BC)
For elliptic and parabolic PDEs i.a.

Dirichlet-BC

u(x)=g(x) , g :∂Ω→R , x ∈∂Ω , or

Neumann-BC:
∂u
∂n

(x)=g(x) , g :∂Ω→R , x ∈∂Ω .

can be applied.
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Initial and Boundary Conditions

Initial Conditions
For parabolic PDEs besides BCs supplementary IC

u(x , t0) = u0(x) , u0 :Ω→R , x ∈Ω ,

are necessary.

Cauchy-Problem
For hyperbolic PDEs besides BCs two ICs (the ordinary IC and
its derivative) are necessary. A initial Cauchy-Problem has to be
solved.
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Dirichlet-Problem of the Poisson-Equation

Definition

Let Ω be a restricted subset of Rd , d ∈N, and ∂Ω the correspon-
ding boundary. Then for given functions f :Ω→R and g :∂Ω→R
the Dirichlet-Problem of the Poisson-Equation reads

−
d∑

i=1

∂2

∂x2
i

u = f in Ω , (3)

u = g on ∂Ω (4)

with unknown function u : Ω̄→R.
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Dirichlet-Problem of the Poisson-Equation

Notation

For u :Ω⊂Rd→R we use

∂iu := ∂
∂xi

u for i =1, . . . ,d ,

∂iju := ∂2

∂xi∂xj
u for i , j =1, . . . ,d ,

∆u :=
(
∂11+. . .+∂dd

)
u (Laplace-Operator) .

Consequence
The Dirichlet-Problem (3)-(4) reads also

−∆u = f in Ω ,

u = g on ∂Ω .
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Function Spaces

For an open subset Ω of Rd , d ∈N, the spaces

C(Ω) :=
{

u :Ω→R
∣∣u continuous in Ω

}
and

Ck (Ω) :=
{

u∈C(Ω)
∣∣Dαu exists in Ω for |α|≤k

and Dαu∈C(Ω)
}

and analog C(Ω̄), Ck (Ω̄) as well as C(∂Ω) are defined.

Definition
Let f ∈C(Ω), g∈C(∂Ω). A function u is called classical solution
of the boundary problem (3)-(4) if u∈C2(Ω) ∩ C(Ω̄), (3) holds
for all x ∈Ω and (4) for all x ∈∂Ω.
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Finite Difference Method (FDM)

Idea
Compute approximations of the solution in finite discrete
grid points of Ω̄.
Replace the derivatives in (3) by difference quotients using
only function values defined in the grid points.
Demand (4) only in grid points.

Consequence
Generation of a linear equation system for the approximation
values⇒ Discretization of the boundary problem
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Derivative by Difference Quotients

Lemma
Let Ω:=(x−h, x +h), x ∈R, h>0. Then there exists a bounded
R∈R such that

1 for u∈C2(Ω̄): u′(x)= u(x+h)−u(x)
h +hR , |R|≤ 1

2‖u
′′‖∞

forward difference quotient

2 for u∈C2(Ω̄): u′(x)= u(x)−u(x−h)
h +hR , |R|≤ 1

2‖u
′′‖∞

backward difference quotient

3 for u∈C3(Ω̄): u′(x)= u(x+h)−u(x−h)
2h +h2R , |R|≤ 1

6‖u
′′′‖∞

central difference quotient

4 for u∈C4(Ω̄): u′′(x)= u(x+h)−2u(x)+u(x−h)
h2 +h2R ,

|R|≤ 1
12‖u

(4)‖∞
Proof
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Generation of the Grid

Remark
In the following the domain is defined by the rectangle

Ω=(0,a)×(0,b).

Parameter h defines the discretization parameter with assigns
particularly the dimension of the discrete problem. For an equi-
distant step size it holds

a = lh b = mh for some l ,m∈N .
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Generation of the Grid

Discrete grid points
The grid points in Ω are defined by

Ωh :=
{

(ih, jh)
∣∣ i =1, . . . , l−1, j =1, . . . ,m−1

}
=
{

(x , y)∈Ω
∣∣ x = ih, y = jh with i , j∈Z

}
and the grid points on ∂Ω by

∂Ωh :=
{

(ih, jh)
∣∣ i∈{0, l}, j∈{0, . . . ,m} oder

i∈{0, . . . , l}, j∈{0,m}
}

=
{

(x , y)∈∂Ω
∣∣ x = ih, y = jh with i , j∈Z

}
.

The collectivity of the grid points is denoted by Ω̄h :=Ωh ∪∂Ωh.
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Discretization
Applying of this approximation to the boundary problem (3)-(4)
leads in each grid point (ih, jh)∈Ωh under disregarding of the
terms Rh2 to

−

(
u
(
(i +1)h, jh

)
−2u

(
ih, jh

)
+u
(
(i−1)h, jh

)
h2

+
u
(
ih, (j +1)h

)
−2u

(
ih, jh

)
+u
(
ih, (j−1)h

)
h2

)
= f (ih, jh) .

For the grid points on the boundary ∂Ωh no approximation are
necessary. The values are defined directly by

u(ih, jh) = g(ih, jh) .
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Assembling of the Linear System

System of equations
After an easy converting and under using of a short notation
the corresponding linear system of equations is defined for
i =1, . . . , l−1, j =1, . . . ,m−1 by the typical 5-point-stencil

1
h2

(
−ui,j−1−ui−1,j +4ui,j−ui+1,j−ui,j+1

)
= fi,j

and for i∈{0, l}, j =0, . . . ,m and i =0, . . . , l , j∈{0,m} by

ui,j := u(ih, jh) = g(ih, jh) =: gij .

Dimension
After an adequate numering of the grid points the system above
can be written as Ãhuh = q̃h, Ãh∈RM,M , M =(l +1)(m+1).
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Discrete System Matrix

Definition
A grid point (x , y)∈Ωh is called close to the boundary if at least
one of it’s direct neighbors is on ∂Ω.

Simplification
In case of the grid points close to the boundary the values of
the neighbors u∈∂Ω can be moved to the right hand side such
that the linear system of equations reads

Ahuh = qh , Ah∈RM1,M1 , uh,qh∈RM1 , M1 =(l−1)(m−1).

Numbering
An obvious numbering is the so called lexicographical line by
line counting.
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Discrete System Matrix

System Matrix

Ah =
1
h2


T −I
−I T −I

. . . . . . . . .
−I T −I

−I T

,T =


4 −1
−1 4 −1

. . . . . . . . .
−1 4 −1

−1 4

,

T, I∈Rl−1,l−1.
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Discrete Right Hand Side

Right Hand Side (RHS)
As a result of the elimination process the rhs is defined by

qh = −Âhg + f

with g∈RM2 , M2 =2(l +m), f ∈RM1 and Âh∈RM1,M2 ,

(Âh)ij =


− 1

h2 if node i is close to the boundary and j is a
neighbour in the 5-point-stancel and on ∂Ω

0 otherwise
.
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Discretization Error of the FDM

Definition
Let u : Ω→R be the continuous solution of the PDE and
uh : Ωh→R the discrete solution of the corresponding linear
system. Then the discretization error is defined by∥∥U−uh

∥∥
with grid function

U : Ωh → R,
x 7→ U(ih, jh) := u(ih, jh)

and an adequate norm ‖.‖.
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Norm

Definition
We are looking for a norm ‖.‖h for which the discretization
method converges in the sence that∥∥uh−uh

∥∥
h → 0 for h→0

holds or that even the convergence rate p>0 exists such that∥∥uh−U
∥∥

h ≤ Chp

is fullfilled.

Examples

Adequate norms are e.g. ‖.‖∞ and ‖.‖0,h.

Michael Blume Numerics of Partial Differential Equations



Partial Differential Equations
Example of Use

Finite Difference Methods

Main Idea
Linear System of Equations
Error Estimation
Drawbacks

Finite Difference Method

Drawbacks
Unnatural high smoothness capacity (Taylor).
Approaches of higher order!?
Complicated handling for polynomial bounded domains.
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Thank you for your attention!
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The Cone Sections

Circle

© Wikipedia.de

Ellipse

© Wikipedia.de

Parabola

© Wikipedia.de

Hyperbola

© Wikipedia.de

Remark
In the cartesian coordinate system the (nonemply) graph of a qua-
dratic equation is always located by a cone section.

back
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The Taylor Series

Lemma
The Taylor series of a function f (x) that is infinity differentiable
in a neighbourhood of a is the power series

∞∑
n=0

f (n)(a)

n!
(x−a)n .

In case of a (k +1) times differentiable function the series can
written by

k∑
n=0

f (n)(a)

n!
(x−a)n + Rn(x)

with
Rn(x) =

∫ x

a

(x−t)k

k !
f (k+1)(t)dt .

back
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Difference Quotients in R First Derivative
Second Derivative

First Derivative by Difference Quotients

Proof

Let u∈C2(Ω̄), Ω:=(x−h, x +h), x ∈R, h>0. Then the Taylor

formula provides

u(x−h) = u(x)−hu′(x)+
h
2

u′′(x−ξ−) , ξ−∈ [0,h] ,

and

u(x +h) = u(x)+hu′(x)+
h
2

u′′(x +ξ+) , ξ+∈ [0,h] ,

and with it directly the first two assertions. Substraction of both
equations leads furthermore for u∈C3(Ω̄) to the central differ-
ence quotient.
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Difference Quotients in R First Derivative
Second Derivative

Second Derivative by Difference Quotients

Proof

The Taylor formula offers for u∈C4(Ω̄) similarly

u(x−h) = u(x)−hu′(x)+
h
2

u′′(x)−h
6

u′′′(x)+
h
24

u(4)(x−ξ−)

with a ξ−∈ [0,h] and

u(x +h) = u(x)+hu′(x)+
h
2

u′′(x)+
h
6

u′′′(x)+
h
24

u(4)(x +ξ−)

for ξ+∈ [0,h]. An addition of both equations leads after all to the
approximation of the second derivative.

back
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