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1. Project

Recent challenges like bioremediation, longterm underground storage of reactive waste or under-
ground carbondioxids sequestration require more and more complex multicomponent reactive
transport models. Although being demanding concerning their numerical approximation, the
decisive bottleneck in using such a model seems to lie in the availability of the increasing

range of the corresponding reaction parameters.

The subject of this project is the investigation of possible identification problems for such flow
and reactive transport applications in porous media, including, e.g., the van Genuchten

parametrization for hydraulic properties and the Monod Model for biodegradation.
Depending on the considered situation (laboratory or field cases, saturated and/or vadose zone,
various phases and multiple interacting species) and the design of experimental models of varying
complexity may be necessary. A typical example includes contaminant transport in the vadose
zone modelled by the Richards equation coupled to several advection-diffusion-

reaction-equations.

The aim of this project is to examine various identification strategies for the inverse

problem improving the standard least squares approaches. Hierarchical choices of parameter
sets, multi experimental design, formfree procedures embedded into a multi-level al-

gorithm, regularized parameter functions in case of numerical difficulties and sensitivity con-

siderations in the residuum are investigated. The concepts will be illustrated by outflow
and breakthrough experiments with soil columns. Thereby, it is wellknown that the sensitivity
and the correlation of parameters prevent a reliable reconstruction from naive history matching.

3. Identification

For the identification of unknown material properties, respected in the model by unknown coef-
ficient functions p ∈ P , a finite number κ ∈ N of selected experiments ek can be accomplished.
Since the continuous solution of the direct problem will not be measurable at a practical realiza-
tion, only a couple of characteristic model parameters wki and error afflicted measurements gε,ki
are available. An obvious approach for the identification is the minimization of the (weighted)
ordinary least squares (OLS) functional

Jε(p) =

κ
∑

k=1

nk
∑

i=1

Λi(gε,ki)
∥

∥

∥
wki(p) − gε,ki

∥

∥

∥

2

2
.

For solving the optimization problem, derivative-free as well as linearizing techniques, such as the
SQP-method, can be applied. But, because of the complexity and the high nonlinearity, just a
trapping to a local minimum can be expected in case of a fixed experimental setup. Furthermore,
because of existing data and observation errors, it has to be attended that a decreasing functional
does not enforcedly lead to a decreasing identification error. To counteract this behavior, a
systematic use of the singular values
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of the sensitivity matrices Ski∈R
mki,r in the definition of the discrete error functional
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is used. Hence, an adaptive approach is designed in which after each termination in a local
minimum the sensitivity based weights, and with it the error functional, are modified. There
is no mathematical proof for convergence but almost all numerical examples (the number of
unknowns must not be to large) show in comparison with the standard OLS a significantly
decreasing identification error.

Unfortunately, inverse problems are often ill-posed (e.g. with regard to the Richards equation
with van Genuchten parametrization or the entire Monod reaction rate) such that an ordinary
or even recursive OLS approach leads only conditionally to satisfying results. For this kind of
problems an alternative formfree ansatz will be applied in which a set of spline approximations
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is used to specify an unknown nonlinearity f : Rd→R
d. Since, in case of a high number of

degrees of freedom, the minimization of the error functional is highly sensitive to the initial values
and the convergence is accordingly slow, the formfree procedure is embedded into a multi-level
algorithm1 where
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In case of a multi-dimensional parametrization (e.g. d = 3 for the entire Monod reaction rate)
sparse grids are used for a further simplification by a significant decreasing of the degree of freedom.

1) for a 1D notation see e.g. B. Igler. Identification of Nonlinear Coefficient Functions in Reactive Transport through Porous

Media, Dissertation, University of Erlangen, 1998.

2. Model Equation

The mathematical model consists of a description of the (un-)saturated water flow and, in case of
reactive components, of a transport formulation. The flow given by the Richards equation reads

∂tθ + ∇· q = 0 , q = −K∇(ψ+h) ,

with parametrization of the water retention curve θ(ψ) and the unsaturated hydraulic conductivity
K(ψ). The fixed parameterization

θ(ψ) = θres + (θsat−θres)Φ(ψ) ,

K(Φ) = Ksat
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given by the van Genuchten ansatz is besides other approaches widespread, but using formfree
nonlinearities instead of fixed parametrization is also possible and favorable. The general transport
equation for each reactive component ci reads

∂t
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)

−∇·
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)
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In case of the three component Monod model, the reaction term for the mobile donator cD and
acceptor cA as well as the immobile biomass cB reads
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with additional yieldfactors αA/D and Y for RA and RB respectively and an optional penalty term
(
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)

for the biomass.

4. Numerical Results

Firstly, a virtual (Monod-)experiment with unknown parametersKMD
,

Figure 1: Euclidean-norms

KID
, KMA

, µmax, Y and αA/D is identified by the standard OLS ansatz
as well as by the adaptive approach with weighting factors based on
the pseudoinverse sensitivity matrices. The necessary measurements
are defined by virtually generated breakthrough curves of the donator
and acceptor both exact and disturbed (by 5% random noise). Fig-
ure 1 provides for the non-error afflicted computation the obtained
Euclidean-norms for an increasing number of recursive identification
starts. Figure 2 presents for the disturbed example the improvement of the achieved parameters.
The decisive performance advantage of the new method is in both cases highly visible.

Figure 2: Recursive Identification of six Monod-Parameters

A second promising application was dealing with the identification of a global parametrization
from a (real) soil column outflow experiment which was accomplished by the group of Tom
Schanz at the Bauhaus-University of Weimar. Because of numerical difficulties induced by the
van Genuchten parametrization, a regularization of the soil hydraulic properties was used, leading
to a robust reconstruction of the pressure curves. Contrary to the standard approach, the new
adaptive ansatz also provides quite similar results for different sets of available measurement data.

IC OLS rec 5 rec 10 rec 15 rec 20 rec 30 rec ≥ 37

α 0.02 0.0391 0.0385 0.0384 0.0383 0.0382 0.0381 0.0371

n 3.0 4.5728 4.4775 4.2653 4.1042 3.9149 3.7469 3.6466

θres 0.05 0.0973 0.1057 0.1183 0.1279 0.1391 0.1490 0.2070

max 4.93·100 4.92·100 4.95·100 4.97·100 4.99·100 5.02·100 5.01·100

Eucl 2.93·101 2.93·101 2.94·101 2.95·101 2.96·101 2.97·101 2.97·101

func 8.59·10
2

8.59·10
2

8.65·10
2

8.70·10
2

8.77·10
2

8.84·10
2

8.84·10
2

IC OLS rec 2 rec 4 rec 6 rec ≥ 8

α 0.02 0.039625 0.039122 0.039185 0.039144 0.039137

n 3.0 3.690272 3.744265 3.713031 3.687270 3.667625

θres 0.05 0.100471 0.099292 0.101756 0.103788 0.105338

max 5.08·100 5.05·100 5.06·100 5.06·100 5.07·100

eucl 3.01·101 3.00·101 3.00·101 3.01·101 3.01·101

func 9.07·10
2

9.01·10
2

9.03·10
2

9.04·10
2

9.05·10
2

Table 1: Identification with only pressure measurements Table 2: Using with pressure and water content data

Finally, a formfree identification result2 for an approximation with quadratic B-Splines and 10
degrees of freedom for every function is shown in figure 3. The necessary measurements were
provided by a direct problem based on the van Genuchten parametrization. To simulate a realistic
scenario the data was disturbed by a 5% Gaussian noise. In spite of the error afflicted data the
hydraulic properties of the soil was identified satisfactorily. There is only a small variance in the
conductivity curve close to the saturated phase, but this is a well-known (unphysical) problem of
the van Genuchten parametrization.

Figure 3: Formfree identification of the hydraulic properties

2) S. Bitterlich. Identifizierung der hydraulischen Funktionen poröser Medien unter Verwendung formfreier Ansätze, Dissertation,

Universiät Erlangen, 2003.
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