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Research Objective
Model order reduction is a powerful tool to efficiently compute solutions
of parametrized PDEs. Nevertheless, for large-scale problems, the train-
ing of suitable reduced models is often prohibitively expensive. Therefore,
we exploit localization strategies and employ ideas from multiscale and
domain decomposition methods to efficiently construct localized reduced
order models in a parallel and locally adaptive manner.

Spectral approximation of transfer operators
For elliptic and parabolic PDEs it is well known that high frequency
modes are damped quickly over space and time. More precisely, for an
elliptic PDE, the transfer operator

TΓout→Ωin
: H1/2(Γout) → H1(Ωin),

mapping Dirichlet boundary values on the boundary of an oversampling
domain to the solution of the PDE on an inner target domain is compact
with rapidly decaying spectrum.
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Figure 1: Left: Local solution of elliptic PDE with high-conductivity channels and random Dirich-
let boundary values; Right: Overlapping domain decomposition and oversampling domain.

Similar results hold for parabolic PDEs with
TTn→Tn+1 : L2(Ω) → L2(Ω),

mapping initial values at time Tn to the solution at a later time Tn+1.
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Idea: Extract modes that still persist in image of T , as these are relevant
for approximation. As T is compact, we can approximate its SVD

T (u) ≈
K∑

k=1

σk(T )ηk(u, ξk),

where the left-singular vectors ηn span optimal approximation spaces
in the sense of Kolmogorov. Use randomized SVDs, which only require
applying T to a few random boundary/initial values.

Localized Reduced Basis Additive Schwarz Methods
Accelerate additive Schwarz methods for elliptic PDEs in multi-query
scenarios with local changes using local reduced approximation spaces:
I Compute solutions via Galerkin projection onto a search space local-

ized by an overlapping domain decomposition.
I Initialize search space as a spectral coarse space (e.g. GenEO) and/or

use left-singular vectors ηk of TΓout→Ωin
.

I Enrich search space by local additive Schwarz updates in the subdo-
mains selected by a localized error indicator.

I High-dimensional computation/communication is only required near
enriched subdomains.

Apply abstract Schwarz theory to bound the number of required en-
richment steps. The approach can be interpreted as a locally-adaptive
additive Schwarz multi-preconditioned CG method.

Figure 2: Top: Solutions of elliptic high-contrast benchmark problem with subsequent local
changes in diffusivity; Bottom: Number of localized enrichments required for solution update.

Time-parallel construction of reduced basis functions
A well known method to compress solution trajectories of time-dependent
PDEs is POD (≈ SVD on time trajectory). Exploit transfer operator to
avoid high-dimensional global computations in time and obtain local and
parallel in time construction of problem-adapted basis functions:
I Select time points Ti that are relevant for approximation in a data-

driven manner via tools from randomized numerical linear algebra.
I Apply TTi−1→Ti

to random initial values in parallel for each i.
I Compute solution via Galerkin projection onto reduced space spanned

by generated basis functions in each step of time-stepping scheme.
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Figure 3: Top: Left: Time-dependent permeability and inflow; Right: Solution of PDE evaluated
at two time points; Bottom: Left: Singular value decay of transfer operators; Right: Relative
L2-error over time for POD versus randomized approach based on same computational budget.

Parareal with spectral coarse propagator
The Parareal algorithm increases parallelism in the solution of parabolic
PDEs by replacing sequential time-stepping u(T ) ≈ F (u0, T0, T ) by par-
allel, iterative time-stepping on time slices [Tn, Tn+1], T0 < . . . < TN ,
coupled by a fast-to-compute coarse stepper G:
Uk+1

n+1 = F (Uk
n , Tn, Tn+1) + G(Uk+1

n , Tn, Tn+1) − G(Uk
n , Tn, Tn+1).

Standard approach: G := ‘time-stepper with large time-step size’.
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Figure 4: Illustration of first iteration of Parareal algorithm.

I Choose G(·, Tn, Tn+1) :=
∑K

k=1 σk(TTn→Tn+1 )ηk(·, ξk).
I N · (K + p)q parallel local problems via randomized SVD (p, q ≈ 1).
I For K large enough, only a single global iteration is needed. Increasing

K increases parallelism at the expanse of additional local work.
I Only badly damped modes need to be transferred by G. For Dirichlet

boundary conditions, the scheme even converges for G = 0!

Outlook: Space-time localized RB methods
I Transfer operator mapping Dirichlet boundary and initial conditions

on space-time oversampling domain to solution of parabolic PDE on
inner space-time target domain can be proven to be compact.

I Construct local reduced approximation spaces in parallel in both space
and time to fully exploit parallelism on modern supercomputers.

I Global coupling via, e.g., partition of unity or DG approaches.
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