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Parareal with Spectral Coarse Solvers

Projection-Based Model Order Reduction
(Reduced Basis Methods)

Full order model (basic example)

For given parameter μ ∈ 𝒫, find uh(μ) ∈ Vh s.t. (dimVh > 10
5)

a(uh(μ), vh;μ) = f (vh) ∀vh ∈ Vh

Reduced order model (via Galerkin projection)

For given VN ⊂ Vh, find uN(μ) ∈ VN s.t. (dimVN ≈ 10 − 100)

a(uN(μ), vN;μ) = f (vN) ∀vN ∈ VN
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Parareal with Spectral Coarse Solvers

How to find VN?

Weak greedy basis generation

1: functionWeak-Greedy(𝒮train ⊂ 𝒫, ε)
2: VN ← {0}
3: whilemaxμ∈𝒮train Err-Est(ROM-Solve(μ),μ) > ε do
4: μ∗ ← arg-max

μ∈𝒮train
Err-Est(ROM-Solve(μ),μ)

5: VN ← span(VN ∪ {FOM-Solve(μ∗)})
6: end while
7: return VN
8: end function

Err-Est

Use residual-based error estimate w.r.t. FOM (finite dimensional can compute dual norms).

▶ Use parameter separability / hyperreduction to gain online efficiency.
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Parareal with Spectral Coarse Solvers

Example: MOR for Li-Ion Battery Models

Experimental Data

Mathematical
Modeling

Multiscale
Numerics

Model
Reduction

Integration
Validation

MULTIBAT: Gain understanding of

degradation processes in

rechargeable Li-Ion Batteries

through mathematical modeling

and simulation at the pore scale.

FOM:

▶ 2.920.000 DOFs

▶ Simulation time: ≈ 15.5h

ROM:

▶ Snapshots: 3

▶ dimVN = 245

▶ Rel. err.: < 4.5 ⋅ 10−3

▶ Reduction time: ≈ 14h

▶ Simulation time: ≈ 8m

▶ Speedup: 120
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Parareal with Spectral Coarse Solvers

Caveats

▶ Potentially high offline time

▶ Especially when dim𝒫 large?

Scenario: Many parameters with only local

influence / local non-parametric changes.
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Parareal with Spectral Coarse Solvers

Localized MOR

▶ coarse triangulation 𝒯H of Ω

▶ build local reduced spaces V T
N , T ∈ 𝒯H

▶ global reduced space VN = ⊕T∈𝒯H
V T
N

▶ Various approaches:
▶ overlapping / non-overlapping

▶ different coupling approaches

▶ interface spaces

▶ …

How to construct V T
N?

V T 0

N
V T 1

N

V T 2

NV T 3

N

V T 4

N
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Parareal with Spectral Coarse Solvers

Online-Adaptive Enrichment of VN

Enrichment algorithm for some μ ∈ 𝒫
▶ compute reduced solution uN(μ)
▶ estimate error 𝜂h,N(μ)
▶ if 𝜂h,N(μ) > Δ, start intermediate local enrichment phase:

∘ compute local error indicators

∘ mark subdomains for enrichment: 𝒳 = mark(𝒯H)

∘ solve corrector problem on oversampling subdomain Tδ ⊃ T for all
T ∈ 𝒳:

a(φh(μ), vh;μ) = f (vh) in Tδ

φh(μ) = uN(μ) on ∂Tδ

∘ extend local reduced basis for all T ∈ 𝒳:

VTN : = spanV
T
N ∪ {φh(μ)|

T
}

∘ update reduced quantities

∘ compute updated reduced solution uN(μ) and 𝜂h,N(μ)

▶ iterate until 𝜂h,N(uμ,N) ≤ Δ, return uN(μ)
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Parareal with Spectral Coarse Solvers

Offline Initialization of VN

Training algorithm for all T ∈ 𝒯H

▶ For every μ ∈ 𝒮train ⊂ 𝒫:

∘ Solve training problem on oversampling subdomain Tδ ⊃ T :

a(φh,0(μ), vh;μ) = f (vh) in Tδ

φh,0(μ) = 0 on ∂Tδ

∘ For 1 ≤ k ≤ K, solve training problem:

a(φh,k(μ), vh;μ) = 0 in Tδ

φh,k(μ) = gk on ∂Tδ

for K random Dirichlet data functions gk on ∂T
δ.

▶ Initialize local RB space on T as

V T
N : = span ⋃

μ∈𝒮train

{φh,0(μ)∣
T
,… , φh,K(μ)∣

T
}.
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Parareal with Spectral Coarse Solvers

More on Training

Transfer operator

𝒯T :H
1/2(∂T δ) → H1(T ), boundary values on ∂T δ ↦ solution inside T

▶ 𝒯T is compact!

▶ “Optimal” V T
N spanned by right-singular vectors of 𝒯T .

▶ Randomized training ⇝ Radomized SVD of 𝒯T [Buhr, Smetana, 2018]

Related ideas:

▶ Cell-problems in multiscale methods (HMM, (G)MsFEM, LOD, etc.)

▶ GFEM [Babuska, Lipton, 2011]

▶ Spectral coarse spaces
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Parareal with Spectral Coarse Solvers

Localized MOR in Time

Transfer operator in time

𝒯Tn→Tn+1
: L2(Ω) → L2(Ω), initial values at Tn ↦ solution at Tn+1

▶ For parabolic problems, 𝒯Tn→Tn+1
is compact.

▶ [Schleuß, Smetana, 2023]:
▶ VN: = {right-singular vectors of 𝒯Tn→Tn+1

|n = 1,…N − 1}

▶ Use randomized SVD.

▶ Select Tn based on PDE coefficients.

T0 TT1 T2 T3 T4 T5 T6

▶ Iterative scheme to converge to arbitrary precision?
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Parareal with Spectral Coarse Solvers

Parareal algorithm
Solve ∂tu(t) = f (t,u(t)) using:

Fnu: = F (u, Tn−1, Tn) fine solver (accurate, but slow)

Gnu: = G(u, Tn−1, Tn) coarse solver (fast, but inaccurate)

Parareal iteration

u00: = u0, u0n+1: = Gn+1u
0
n 0 ≤ n < N

uk+1n+1: = Fn+1u
k
n + Gn+1u

k+1
n − Gn+1u

k
n 0 ≤ n < N, k ∈ ℕ0

Fn can be computed in parallel!

T0 T1 T2 T3 T4 T5

u0

u Fn+1(u0n)
Gn+1(u0n) Gn+1(u10)

u0n u1n
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Parareal with Spectral Coarse Solvers

Example: Heat Equation

ut(t, x) − uxx(t, x) = 100 ⋅ sin(5πt)(1 + cos(3πx)) x ∈ (0, 1)
u(0, x) = u0(x) = 10χ[0.6,0.8] t ∈ [0, T ]

u(0, t) = u(1, t) = 0

0

0.5

1 0
0.5

1

0

10

x

t

Solution

0 0.25 0.5 0.75 1
10−16

10−12

10−8

10−4

100

t

ℓ2
-e
rr
o
r

Parareal error with Gn = 0
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Parareal with Spectral Coarse Solvers

Example: Heat Equation
Exact solution:

u(x, t) =
∞

∑
m=1

̂um(t)
√
2 sin(mπx)

̂um(t) = ̂u0,me−m
2π2t +∫

t

0

̂fm(τ)e−m2π2(t−τ)dτ,

Coarse solver:

Gnu: =

R

∑
m=1

ûm(Tn)
√
2 sin(mπx)

̂um(Tn): = ûme
−m2π2(Tn−Tn−1)

0 0.5 1
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10−4
100

ℓ2
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rr
o
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R = 1

0 0.5 1
10−16
10−12
10−8
10−4
100

R = 2

0 0.5 1
10−16
10−12
10−8
10−4
100

R = 3

A priori error bound (time-invariant, self-adjoint case)

max
1≤n≤N

‖ekn‖ ≤ ( sup
λ∈σ(F ′)⧵Γ

|λ|)
k

⋅ max
1≤m≤N−k

‖e0m‖
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−m2π2(Tn−Tn−1)

0 0.5 1
10−16
10−12
10−8
10−4
100

ℓ2
-e
rr
o
r

R = 1

0 0.5 1
10−16
10−12
10−8
10−4
100

R = 2

0 0.5 1
10−16
10−12
10−8
10−4
100

R = 3

A priori error bound (time-invariant, self-adjoint case)

max
1≤n≤N

‖ekn‖ ≤ ( sup
λ∈σ(F ′)⧵Γ

|λ|)
k

⋅ max
1≤m≤N−k

‖e0m‖

Stephan Rave (stephan.rave@uni-muenster.de) 13



Parareal with Spectral Coarse Solvers

Example: Heat Equation
Exact solution:

u(x, t) =
∞

∑
m=1

̂um(t)
√
2 sin(mπx)

̂um(t) = ̂u0,me−m
2π2t +∫

t

0

̂fm(τ)e−m2π2(t−τ)dτ,

Coarse solver:

Gnu: =

R

∑
m=1
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Parareal with Spectral Coarse Solvers

Parareal with Spectral Coarse Solver

▶ V Hilbert space. Fn:V → V be compact and affine linear:

Fnv = F ′
nv + bn, bn: = Fn0

(linear parabolic PDE with time-varying coefficients)

▶ SVD of F ′
n:

F ′
nv =

rank F ′
n

∑
r=1

σn,r ⋅ (φn,r, v)V ⋅ ψn,r.

Spectral coarse solver

Gnv: =

Rn

∑
r=1

σn,r ⋅ (ϕn,r, v) ⋅ ψn,r + bn.

Approximation error

‖Fn − Gn‖ = σn,Rn+1.
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Parareal with Spectral Coarse Solvers

Computing Gn via Randomized SVD

1. W : = span{F ′
nω1,… , F ′

nωRn+p
}, ωi randomly chosen

2. w1,… ,wRn+p
ONB ofW

3. X : = span{F ′∗
n w1,… , F ′∗

n wRn+p
}

4. v1,… , vRn+p ONB for X

F ′
nv ≈ PWF

′
nv =

Rn+p

∑
i=1

wi ⋅ (wi, F
′
nv)V =

Rn+p

∑
i=1

wi ⋅ (F ′∗
n wi, v)V =

Rn+p

∑
i,j=1

wi ⋅ (F ′∗
n wi, vj)V ⋅ (vj, v)V .

5. SVD ofM ∈ R(Rn+p)×(Rn+p),Mi,j: = (F ′∗
n wi, vj)V with singular values/vectors σr,ψ

r
,φ

r
.

6. Return

σr, φr: =

Rn+p

∑
i=1

φ
r,i
⋅ wi, ψr: =

Rn+p

∑
i=1

ψ
r,i
⋅ vi 1 ≤ r ≤ Rn.

Computational effort

Rn + p + 1 eval. of Fn (embarrasingly parallel) and Rn + p eval. of F ∗
n (embarassingly parallel)
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n wi, vj)V with singular values/vectors σr,ψ

r
,φ

r
.

6. Return

σr, φr: =

Rn+p

∑
i=1

φ
r,i
⋅ wi, ψr: =

Rn+p

∑
i=1

ψ
r,i
⋅ vi 1 ≤ r ≤ Rn.

Computational effort

Rn + p + 1 eval. of Fn (embarrasingly parallel) and Rn + p eval. of F ∗
n (embarassingly parallel)
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Parareal with Spectral Coarse Solvers

A Priori Error Bounds

Superlinear convergence

Let

δ = max
1≤n≤N

σn,1 ε = max
1≤n≤N

σn,Rn+1

Then:

‖ekn‖ ≤ εk
n−k

∑
m=1

(
n −m

k − 1
)δn−m−k‖e0m‖

≤ 2εk
n−k−1

∑
m=1

(
n −m

k
)δn−m−k‖bm‖

Linear convergence (long time)

If δ < 1, we have for k ∈ ℕ:

max
1≤n≤N

‖ekn‖ ≤ ( ε

1 − δ
)
k

max
1≤n≤N−k

‖e0n‖
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Parareal with Spectral Coarse Solvers

Example: Heat conduction with time-varying Robin boundary

▶ P1 simplicial FEs

▶ 444,693 DOFs

▶ N = 25

ut(t, x) −∇ ⋅ [d(x)∇xu(x)] = 0 x ∈ Ω, t ∈ [0, 1]

−d(x)∇xu(t, x) ⋅ n(x) = (1
2
+ t) ⋅ u(t, x) x ∈ Γfin

−d(x)∇xu(t, x) ⋅ n(x) = g(t) x ∈ Γbot

−d(x)∇xu(t, x) ⋅ n(x) = 0 x ∈ Γ ⧵ (Γfin ∪ Γbot)
u(0, x) = 0.

d(x) =
⎧{
⎨{⎩

10 x ∈ Ωfin

100 x ∈ Ωbase

1000 x ∈ Ωpipe,

g(t) =

⎧{{
⎨{{⎩

50 ⋅
t

0.3
t ≤ 0.3

50 ⋅ (1 + sign(sin( t−0.3

0.3
⋅ 8 ⋅ π))) 0.3 < t ≤ 0.6

50 ⋅ (1 + cos( t−0.6

0.4
⋅ 20 ⋅ π)) 0.6 < t.
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Parareal with Spectral Coarse Solvers

Example: Heat conduction with time-varying Robin boundary

▶ Spectral Gn with p = 1 compared to Gn = single backward Euler step.

▶ R = 2: Error of 1013 at k = 2 iterations.

▶ Choose R to tune parallelism vs. computational work.

▶ Less Fn evaluations needed as for Euler.

0 4 8 12 16 20 24
10−16
10−13
10−10
10−7
10−4
10−1
102

k

ℓ2
-e
rr
o
r

1 2 3 4 5 6 7

10−15
10−13
10−11
10−9
10−7
10−5
10−3
10−1

speedup

ℓ2
-e
rr
o
r

R = 0 R = 1 R = 2 R = 3 Euler
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A Posteriori Error Bounds

Error bound

‖ekn‖ ≤ ε
n−1

∑
m=1

δn−m−1‖ukm − uk−1m ‖

▶ Easily computable (δ, ε known from SVDs).

▶ Rigorous when randomized SVD error taken

into account.
0 1 2 3 4 5 6 7 8

10−3
10−2
10−1
100
101
102
103
104
105

k

Estimator efficiency for heatsink example

R = 0 R = 1 R = 2 R = 3

Figure: dashed plot when error below 10−13
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Parareal with Spectral Coarse Solvers

Thank you for your attention!

Gander, Ohlberger, R. A Parareal algorithm without Coarse Propagator?

arXiv:2409.02673

Gander, Ohlberger, R. A Parareal algorithm with Spectral Coarse Solver.

in preparation

Slides: https://stephanrave.de/talks/dd29.pdf
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