

Parareal with Spectral Coarse Solvers

Martin J. Gander¹, Mario Ohlberger², Stephan Rave²

¹Université de Genève, Switzerland

²University of Münster, Germany

DD29

Milan, June 24, 2025

Projection-Based Model Order Reduction

(Reduced Basis Methods)

Full order model (basic example)

For given parameter $\mu \in \mathcal{P}$, find $u_h(\mu) \in V_h$ s.t.

 $(\dim V_h > 10^5)$

$$a(u_h({\color{magenta}\mu}),v_h;{\color{magenta}\mu})=f(v_h)$$

$$\forall v_h \in V_h$$

Projection-Based Model Order Reduction

(Reduced Basis Methods)

Full order model (basic example)

For given parameter $\mu \in \mathcal{P}$, find $u_h(\mu) \in V_h$ s.t.

 $(\dim V_h > 10^5)$

$$a(u_h({\color{red}\mu}),v_h;{\color{red}\mu})=f(v_h)$$

$$\forall v_h \in V_h$$

Reduced order model (via Galerkin projection)

For given $V_N \subset V_h$, find $u_N(\underline{\mu}) \in V_N$ s.t.

$$(\dim V_N \approx 10 - 100)$$

$$a(u_N({\color{magenta}\mu}),v_N;{\color{magenta}\mu})=f(v_N)$$

$$\forall v_N \in V_N$$

How to find V_N ?

Weak greedy basis generation

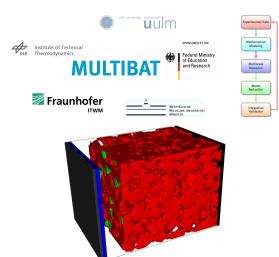
```
1: function WEAK-GREEDY(\mathcal{S}_{train} \subset \mathcal{P}, \varepsilon)
2: V_N \leftarrow \{0\}
3: while \max_{\mu \in \mathcal{S}_{train}} \mathsf{ERR\text{-}EST}(\mathsf{ROM\text{-}SOLVE}(\mu), \mu) > \varepsilon do
4: \mu^* \leftarrow \mathsf{arg\text{-}max}_{\mu \in \mathcal{S}_{train}} \mathsf{ERR\text{-}EST}(\mathsf{ROM\text{-}SOLVE}(\mu), \mu)
5: V_N \leftarrow \mathsf{span}(V_N \cup \{\mathsf{FOM\text{-}SOLVE}(\mu^*)\})
6: end while
7: return V_N
8: end function
```

ERR-EST

Use residual-based error estimate w.r.t. FOM (finite dimensional → can compute dual norms).

▶ Use parameter separability / hyperreduction to gain online efficiency.

Example: MOR for Li-Ion Battery Models



MULTIBAT: Gain understanding of degradation processes in rechargeable Li-lon Batteries through mathematical modeling and simulation at the pore scale.

FOM:

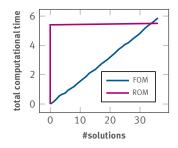
- > 2,920,000 DOFs
- ► Simulation time: ≈ 15.5h

ROM:

- ► Snapshots: 3
- ▶ dim $V_N = 245$
- ► Rel. err.: < 4.5 · 10⁻³
- ▶ Reduction time: ≈ 14h
- ► Simulation time · ≈ 8m
- ► Speedup: 120

Caveats

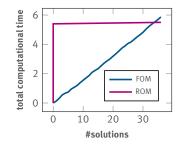
- ▶ Potentially high offline time
- ► Especially when dim *P* large?

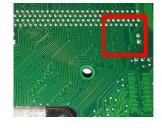


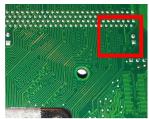
Caveats

- ▶ Potentially high offline time
- ► Especially when dim *P* large?

Scenario: Many parameters with only local influence / local non-parametric changes.

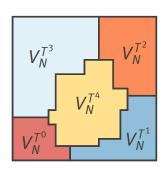






Localized MOR

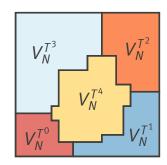
- ightharpoonup coarse triangulation \mathcal{T}_H of Ω
- ▶ build local reduced spaces V_N^T , $T \in \mathcal{T}_H$
- global reduced space $V_N = \bigoplus_{T \in \mathcal{T}_H} V_N^T$
- Various approaches:
 - overlapping / non-overlapping
 - different coupling approaches
 - ▶ interface spaces
 - **.**..



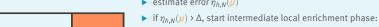
Localized MOR

- ightharpoonup coarse triangulation \mathcal{T}_H of Ω
- ▶ build local reduced spaces V_N^T , $T \in \mathcal{T}_H$
- ▶ global reduced space $V_N = \bigoplus_{T \in \mathcal{T}_H} V_N^T$
- ▶ Various approaches:
 - overlapping / non-overlapping
 - different coupling approaches
 - ▶ interface spaces
 - **...**

How to construct V_N^T ?



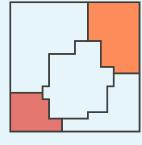
for some $\mu \in \mathcal{P}$



estimate error $\eta_{h,N}(\mu)$

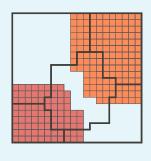
 \triangleright compute reduced solution $u_N(\mu)$

- · compute local error indicators
- mark subdomains for enrichment: $\mathcal{X} = \text{mark}(\mathcal{T}_H)$



Enrichment algorithm

for some $\mu \in \mathcal{P}$

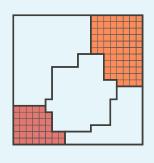


- \triangleright compute reduced solution $u_N(\mu)$
- estimate error $\eta_{h,N}(\mu)$
- if $\eta_{h,N}(\mu) > \Delta$, start intermediate local enrichment phase:
 - compute local error indicators
 - mark subdomains for enrichment: $\mathcal{X} = \text{mark}(\mathcal{T}_H)$
 - $\circ~$ solve corrector problem on oversampling subdomain $T^{\delta}\supset T$ for all $T\in\mathcal{X}$:

$$a(\varphi_h(\mu), v_h; \mu) = f(v_h)$$
 in T^{δ}
$$\varphi_h(\mu) = u_N(\mu)$$
 on ∂T^{δ}

Enrichment algorithm

for some $\mu \in \mathcal{P}$



- \triangleright compute reduced solution $u_N(\mu)$
- estimate error $\eta_{h,N}(\mu)$
- if $\eta_{h,N}(\mu) > \Delta$, start intermediate local enrichment phase:
 - compute local error indicators
 - mark subdomains for enrichment: $\mathcal{X} = \text{mark}(\mathcal{T}_H)$
 - solve corrector problem on oversampling subdomain $T^\delta\supset T$ for all $T\in\mathcal{X}$:

$$a(\varphi_h(\mu), v_h; \mu) = f(v_h)$$
 in T^{δ}

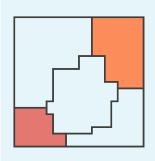
$$\varphi_h({\color{red}\mu}) = u_N({\color{red}\mu})$$
 on $\partial {\cal T}^\delta$

extend local reduced basis for all T ∈ X:

$$V_N^T := \operatorname{span} V_N^T \cup \{ \left. \varphi_h(\underline{\mu}) \right|_T \}$$

Enrichment algorithm

for some $\mu \in \mathcal{P}$



- \triangleright compute reduced solution $u_N(\mu)$
- estimate error $\eta_{h,N}(\mu)$
- if $\eta_{h,N}(\mu) > \Delta$, start intermediate local enrichment phase:
 - compute local error indicators
 - mark subdomains for enrichment: $\mathcal{X} = \text{mark}(\mathcal{T}_H)$
 - \circ solve corrector problem on oversampling subdomain $T^\delta\supset T$ for all $T\in\mathcal{X}$:

$$a(\varphi_h(\mu), v_h; \mu) = f(v_h)$$
 in T^{δ}
 $\varphi_h(\mu) = u_N(\mu)$ on ∂T^{δ}

extend local reduced basis for all T ∈ X:

$$V_N^T := \operatorname{span} V_N^T \cup \{ \varphi_h(\underline{\mu})|_T \}$$

- update reduced quantities
- compute updated reduced solution $u_N(\mu)$ and $\eta_{h,N}(\mu)$
- ▶ iterate until $\eta_{h,N}(u_{\mu,N}) \leq \Delta$, return $u_N(\mu)$

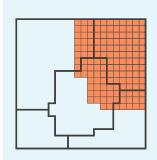
Offline Initialization of V_N

Training algorithm for all $T \in \mathcal{T}_H$

Offline Initialization of V_N

Training algorithm

for all $T \in \mathcal{T}_H$



- ▶ For every $\mu \in \mathcal{S}_{train} \subset \mathcal{P}$:
 - Solve training problem on oversampling subdomain $T^{\delta} \supset T$:

$$a(\varphi_{h,0}(\mu), v_h; \mu) = f(v_h)$$
 in T^{δ}

$$\varphi_{h,0}(\mu) = 0$$
 on ∂T^{δ}

• For $1 \le k \le K$, solve training problem:

$$a(\varphi_{h,k}({\color{black}\mu}),v_h;{\color{black}\mu})=0$$
 in T^δ

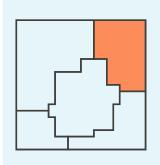
$$\varphi_{h,k}(\mu) = g_k$$
 on ∂T^{δ}

for K random Dirichlet data functions g_k on ∂T^{δ} .

Offline Initialization of V_N

Training algorithm

for all $T \in \mathcal{T}_H$



- ▶ For every $\mu \in \mathcal{S}_{train} \subset \mathcal{P}$:
 - Solve training problem on oversampling subdomain $T^{\delta} \supset T$:

$$a(\varphi_{h,0}({\color{red}\mu}),v_h;{\color{red}\mu})=f(v_h) \hspace{1cm} \text{in } T^{\delta}$$

$$\varphi_{h,0}(\mu) = 0$$
 on ∂T^{δ}

• For $1 \le k \le K$, solve training problem:

$$a(\varphi_{h,k}(\mu), v_h; \mu) = 0$$
 in T^{δ}
$$\varphi_{h,k}(\mu) = g_k$$
 on ∂T^{δ}

for K random Dirichlet data functions g_k on $\partial \mathcal{T}^{\delta}$.

▶ Initialize local RB space on *T* as

$$V_{N}^{T}$$
:= span $\bigcup_{\mu \in \mathcal{S}_{train}} \{ \left. \varphi_{h,0}(\mu) \right|_{T}, \dots, \left. \varphi_{h,K}(\mu) \right|_{T} \}.$

More on Training

Transfer operator

$$\mathcal{T}_T: H^{1/2}(\partial T^{\delta}) \to H^1(T)$$
, boundary values on $\partial T^{\delta} \mapsto$ solution inside T

- $ightharpoonup \mathcal{T}_T$ is compact!
- "Optimal" V_N^T spanned by right-singular vectors of \mathcal{T}_T .
- ▶ Randomized training \rightsquigarrow Radomized SVD of \mathcal{T}_T [Buhr, Smetana, 2018]

More on Training

Transfer operator

$$\mathcal{T}_T: H^{1/2}(\partial T^{\delta}) \to H^1(T)$$
, boundary values on $\partial T^{\delta} \mapsto$ solution inside T

- $ightharpoonup \mathcal{T}_T$ is compact!
- "Optimal" V_N^T spanned by right-singular vectors of \mathcal{T}_T .
- ightharpoonup Randomized SVD of $\mathcal{T}_{\mathcal{I}}$ [Buhr, Smetana, 2018]

Related ideas:

- ▶ Cell-problems in multiscale methods (HMM, (G)MsFEM, LOD, etc.)
- ▶ GFEM [Babuska, Lipton, 2011]
- ▶ Spectral coarse spaces

Localized MOR in Time

Transfer operator in time

$$\mathcal{T}_{T_n \to T_{n+1}}: L^2(\Omega) \to L^2(\Omega)$$
, initial values at $T_n \mapsto$ solution at T_{n+1}

- ▶ For parabolic problems, $\mathcal{T}_{T_n \to T_{n+1}}$ is compact.
- ▶ [Schleuß, Smetana, 2023]:
 - ▶ V_N := {right-singular vectors of $\mathcal{T}_{T_n \to T_{n+1}} \mid n = 1, ... N 1$ }
 - Use randomized SVD.
 - ▶ Select T_n based on PDE coefficients.

Localized MOR in Time

Transfer operator in time

$$\mathcal{T}_{T_n \to T_{n+1}}: L^2(\Omega) \to L^2(\Omega)$$
, initial values at $T_n \mapsto$ solution at T_{n+1}

- ▶ For parabolic problems, $\mathcal{T}_{T_n \to T_{n+1}}$ is compact.
- ▶ [Schleuß, Smetana, 2023]:
 - ▶ V_N : = {right-singular vectors of $\mathcal{T}_{T_n \to T_{n+1}} \mid n = 1, ... N 1$ }
 - Use randomized SVD.
 - ▶ Select T_n based on PDE coefficients.



▶ Iterative scheme to converge to arbitrary precision?

Parareal algorithm

Solve
$$\partial_t u(t) = f(t, u(t))$$
 using:

$$F_n u := F(u, T_{n-1}, T_n)$$

$$G_n u := G(u, T_{n-1}, T_n)$$

fine solver (accurate, but slow)

coarse solver (fast, but inaccurate)

Parareal iteration

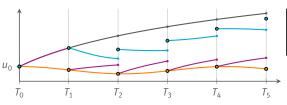
$$u_0^0 := u_0, \quad u_{n+1}^0 := G_{n+1} u_n^0$$

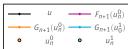
$$u_{n+1}^{k+1} := F_{n+1} u_n^k + G_{n+1} u_n^{k+1} - G_{n+1} u_n^k$$

$$0 \le n < N$$

$$0 \le n < N, k \in \mathbb{N}_0$$

F_n can be computed in parallel!

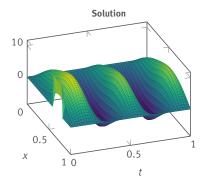




$$u_t(t,x) - u_{xx}(t,x) = 100 \cdot \sin(5\pi t)(1 + \cos(3\pi x)) \quad x \in (0,1)$$

$$u(0,x) = u_0(x) = 10x_{[0.6,0.8]} \qquad t \in [0,T]$$

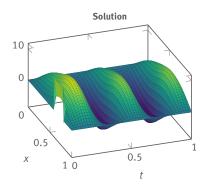
$$u(0,t) = u(1,t) = 0$$

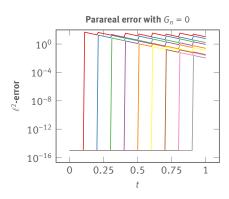


$$u_t(t,x) - u_{xx}(t,x) = 100 \cdot \sin(5\pi t)(1 + \cos(3\pi x)) \quad x \in (0,1)$$

$$u(0,x) = u_0(x) = 10x_{[0.6,0.8]} \qquad t \in [0,T]$$

$$u(0,t) = u(1,t) = 0$$





Exact solution:

$$\begin{split} u(x,t) &= \sum_{m=1}^{\infty} \hat{u}_m(t) \sqrt{2} \sin(m\pi x) \\ \hat{u}_m(t) &= \hat{u}_{0,m} e^{-m^2 \pi^2 t} + \int_0^t \hat{f}_m(\tau) e^{-m^2 \pi^2 (t-\tau)} \mathrm{d}\tau, \end{split}$$

Exact solution:

$$\begin{split} u(x,t) &= \sum_{m=1}^{\infty} \hat{u}_m(t) \sqrt{2} \sin(m\pi x) \\ \hat{u}_m(t) &= \hat{u}_{0,m} e^{-m^2 \pi^2 t} + \int_0^t \hat{f}_m(\tau) e^{-m^2 \pi^2 (t-\tau)} \mathrm{d}\tau, \end{split}$$

Coarse solver:

$$G_n u := \sum_{m=1}^R \hat{u}_m(T_n) \sqrt{2} \sin(m\pi x)$$

$$\hat{u}_m(T_n) := \hat{u}_m e^{-m^2 \pi^2 (T_n - T_{n-1})}$$

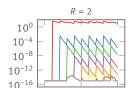
Exact solution:

$$\begin{split} u(x,t) &= \sum_{m=1}^{\infty} \hat{u}_m(t) \sqrt{2} \sin(m\pi x) \\ \hat{u}_m(t) &= \hat{u}_{0,m} e^{-m^2 \pi^2 t} + \int_0^t \hat{f}_m(\tau) e^{-m^2 \pi^2 (t-\tau)} \mathrm{d}\tau, \end{split}$$

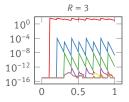
Coarse solver:

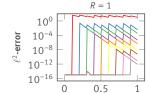
$$G_n u := \sum_{m=1}^R \hat{u}_m(T_n) \sqrt{2} \sin(m\pi x)$$

$$\hat{u}_m(T_n) := \hat{u}_m e^{-m^2 \pi^2 (T_n - T_{n-1})}$$



0.5





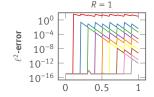
Exact solution:

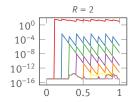
$$\begin{split} u(x,t) &= \sum_{m=1}^{\infty} \hat{u}_m(t) \sqrt{2} \sin(m\pi x) \\ \hat{u}_m(t) &= \hat{u}_{0,m} e^{-m^2 \pi^2 t} + \int_0^t \hat{f}_m(\tau) e^{-m^2 \pi^2 (t-\tau)} \mathrm{d}\tau, \end{split}$$

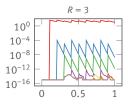
Coarse solver:

$$G_n u := \sum_{m=1}^R \hat{u}_m(T_n) \sqrt{2} \sin(m\pi x)$$

$$\hat{u}_m(T_n) := \hat{u}_m e^{-m^2 \pi^2 (T_n - T_{n-1})}$$







A priori error bound (time-invariant, self-adjoint case)

$$\max_{1 \le n \le N} \|e_n^k\| \le \left(\sup_{\lambda \in \sigma(F') \setminus \Gamma} |\lambda|\right)^k \cdot \max_{1 \le m \le N-k} \|e_m^0\|$$

Parareal with Spectral Coarse Solver

▶ *V* Hilbert space. F_n : $V \rightarrow V$ be compact and affine linear:

$$F_n v = F'_n v + b_n, \qquad b_n := F_n 0$$

(linear parabolic PDE with time-varying coefficients)

▶ SVD of F'_n :

$$F_n'v = \sum_{r=1}^{\operatorname{rank} F_n'} \sigma_{n,r} \cdot (\varphi_{n,r}, v)_V \cdot \psi_{n,r}.$$

Parareal with Spectral Coarse Solver

▶ *V* Hilbert space. F_n : $V \to V$ be compact and affine linear:

$$F_n v = F'_n v + b_n, \qquad b_n := F_n 0$$

(linear parabolic PDE with time-varying coefficients)

▶ SVD of F'_n :

$$F_n'v = \sum_{r=1}^{\operatorname{rank} F_n'} \sigma_{n,r} \cdot (\varphi_{n,r}, v)_V \cdot \psi_{n,r}.$$

Spectral coarse solver

$$G_n v := \sum_{r=1}^{R_n} \sigma_{n,r} \cdot (\phi_{n,r}, v) \cdot \psi_{n,r} + b_n.$$

Approximation error

$$||F_n - G_n|| = \sigma_{n,R_n+1}.$$

1. $W:= \text{span}\{F_n'\omega_1, \dots, F_n'\omega_{R_n+p}\}, \omega_i \text{ randomly chosen}$

- 1. $W:= \text{span}\{F'_n\omega_1, \dots, F'_n\omega_{R_n+p}\}, \omega_i \text{ randomly chosen}$
- 2. W_1, \dots, W_{R_n+p} ONB of W

- 1. $W:= \text{span}\{F'_n\omega_1, \dots, F'_n\omega_{R_n+p}\}, \omega_i \text{ randomly chosen}$
- 2. W_1, \dots, W_{R_n+p} ONB of W
- 3. $X:= \text{span}\{F_n'^*w_1, \dots, F_n'^*w_{R_n+p}\}$

- 1. $W:= \text{span}\{F'_n\omega_1, \dots, F'_n\omega_{R_n+p}\}, \omega_i \text{ randomly chosen}$
- 2. $w_1, ..., w_{R_n+p}$ ONB of W
- 3. $X:= \text{span}\{F_n^{\prime*}w_1, \dots, F_n^{\prime*}w_{R_n+p}\}$
- 4. v_1, \ldots, v_{R_n+p} ONB for X

$$F'_n v \approx P_W F'_n v = \sum_{i=1}^{R_n + p} w_i \cdot (w_i, F'_n v)_V = \sum_{i=1}^{R_n + p} w_i \cdot (F'^*_n w_i, v)_V = \sum_{i,j=1}^{R_n + p} w_i \cdot (F'^*_n w_i, v_j)_V \cdot (v_j, v)_V.$$

- 1. $W:= \text{span}\{F'_n\omega_1, \dots, F'_n\omega_{R_n+p}\}, \omega_i \text{ randomly chosen}$
- 2. W_1, \ldots, W_{R_n+p} ONB of W
- 3. $X:= \text{span}\{F_n^{\prime*}w_1, \dots, F_n^{\prime*}w_{R_n+p}\}$
- 4. v_1, \ldots, v_{R_n+p} ONB for X

$$F'_n v \approx P_W F'_n v = \sum_{i=1}^{R_n + p} w_i \cdot (w_i, F'_n v)_V = \sum_{i=1}^{R_n + p} w_i \cdot (F'^*_n w_i, v)_V = \sum_{i,j=1}^{R_n + p} w_i \cdot (F'^*_n w_i, v_j)_V \cdot (v_j, v)_V.$$

5. SVD of $M \in R^{(R_n+p)\times(R_n+p)}$, $M_{i,j} := (F_n'^*w_i, v_j)_V$ with singular values/vectors $\sigma_r, \underbrace{\psi}_{-r}, \underbrace{\sigma}_{-r}$

- 1. $W:= \text{span}\{F'_n\omega_1, \dots, F'_n\omega_{R_n+p}\}, \omega_i \text{ randomly chosen}$
- 2. W_1, \ldots, W_{R_n+p} ONB of W
- 3. $X:= \text{span}\{F_n^{\prime *} w_1, \dots, F_n^{\prime *} w_{R_n+p}\}$
- 4. v_1, \ldots, v_{R_n+n} ONB for X

$$F_n'v \approx P_W F_n'v = \sum_{i=1}^{R_n+p} w_i \cdot (w_i, F_n'v)_V = \sum_{i=1}^{R_n+p} w_i \cdot (F_n'^*w_i, v)_V = \sum_{i,j=1}^{R_n+p} w_i \cdot (F_n'^*w_i, v_j)_V \cdot (v_j, v)_V.$$

- 5. SVD of $M \in R^{(R_n+p)\times(R_n+p)}$, $M_{i,j} := (F_n'^*w_i, v_j)_V$ with singular values/vectors σ_r , $\underline{\psi}_r$, $\underline{\sigma}_r$.
- 6. Return

$$\sigma_r, \quad \varphi_r := \sum_{i=1}^{R_n+p} \underline{\varphi}_{r,i} \cdot w_i, \quad \psi_r := \sum_{i=1}^{R_n+p} \underline{\psi}_{r,i} \cdot v_i \qquad 1 \le r \le R_n.$$

- 1. $W:= \text{span}\{F'_n\omega_1, \dots, F'_n\omega_{R_n+p}\}, \omega_i \text{ randomly chosen}$
- 2. W_1, \ldots, W_{R_n+D} ONB of W
- 3. $X:= \text{span}\{F_n^{\prime *} w_1, \dots, F_n^{\prime *} w_{R_n+p}\}$
- 4. v_1, \ldots, v_{R_n+p} ONB for X

$$F'_{n}v \approx P_{W}F'_{n}v = \sum_{i=1}^{R_{n}+p} w_{i} \cdot (w_{i}, F'_{n}v)_{V} = \sum_{i=1}^{R_{n}+p} w_{i} \cdot (F'_{n}*w_{i}, v)_{V} = \sum_{i,j=1}^{R_{n}+p} w_{i} \cdot (F'_{n}*w_{i}, v_{j})_{V} \cdot (v_{j}, v)_{V}.$$

- 5. SVD of $M \in R^{(R_n+p)\times(R_n+p)}$, $M_{i,j} := (F_n'^*w_i, v_j)_V$ with singular values/vectors σ_r , $\underline{\psi}_r$, $\underline{\sigma}_r$.
- 6. Return

$$\sigma_r, \quad \varphi_r := \sum_{i=1}^{R_n+p} \underline{\varphi}_{r,i} \cdot w_i, \quad \psi_r := \sum_{i=1}^{R_n+p} \underline{\psi}_{r,i} \cdot v_i \qquad 1 \leq r \leq R_n.$$

Computational effort

 $R_n + p + 1$ eval. of F_n (embarrasingly parallel) and $R_n + p$ eval. of F_n^* (embarassingly parallel)

A Priori Error Bounds

Superlinear convergence

Let

$$\delta = \max_{1 \le n \le N} \sigma_{n,1} \qquad \varepsilon = \max_{1 \le n \le N} \sigma_{n,R_n+1}$$

Then:

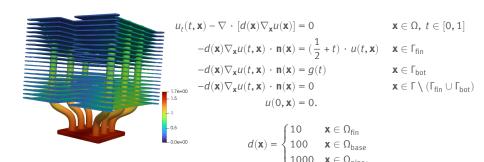
$$\begin{split} \|e_n^k\| &\leq \varepsilon^k \sum_{m=1}^{n-k} \binom{n-m}{k-1} \delta^{n-m-k} \|e_m^0\| \\ &\leq 2\varepsilon^k \sum_{m=1}^{n-k-1} \binom{n-m}{k} \delta^{n-m-k} \|b_m\| \end{split}$$

Linear convergence (long time)

If δ < 1, we have for $k \in \mathbb{N}$:

$$\max_{1 \leq n \leq N} \|e_n^k\| \leq \left(\frac{\varepsilon}{1-\delta}\right)^k \max_{1 \leq n \leq N-k} \|e_n^0\|$$

Example: Heat conduction with time-varying Robin boundary

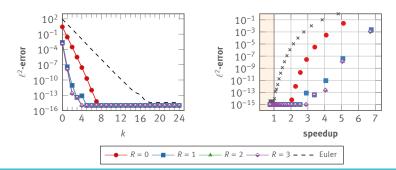


- ▶ P1 simplicial FEs
- ▶ 444,693 DOFs
- N = 25

$$g(t) = \begin{cases} 50 \cdot \frac{t}{0.3} & t \leq 0.3 \\ 50 \cdot \left(1 + \operatorname{sign}\left(\sin\left(\frac{t - 0.3}{0.3} \cdot 8 \cdot \pi\right)\right)\right) & 0.3 < t \leq 0.6 \\ 50 \cdot \left(1 + \cos\left(\frac{t - 0.6}{0.4} \cdot 20 \cdot \pi\right)\right) & 0.6 < t. \end{cases}$$

Example: Heat conduction with time-varying Robin boundary

- ▶ Spectral G_n with p = 1 compared to $G_n = \text{single backward Euler step.}$
- R = 2: Error of 10^{13} at k = 2 iterations.
- ▶ Choose *R* to tune parallelism vs. computational work.
- **Less** F_n evaluations needed as for Euler.



A Posteriori Error Bounds

Error bound

$$\|e_n^k\| \le \varepsilon \sum_{m=1}^{n-1} \delta^{n-m-1} \|u_m^k - u_m^{k-1}\|$$

- **Easily computable** (δ , ε known from SVDs).
- Rigorous when randomized SVD error taken into account.

Estimator efficiency for heatsink example 10^5 10^4 10^3 10^2 10^1 10^0 10^{-1} 10^{-2} 10^{-3} 0 1 2 3 4 5 6 7 8

Figure: dashed plot when error below 10^{-13}

Thank you for your attention!

Gander, Ohlberger, R. A Parareal algorithm without Coarse Propagator? arXiv:2409.02673

Gander, Ohlberger, R. A Parareal algorithm with Spectral Coarse Solver. *in preparation*

Slides: https://stephanrave.de/talks/dd29.pdf