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We are interested in the efficient and reliable numerical solution of parametric
multi-scale problems, the multi-scale (parametric) character of which is indicated
by ε (µ) if expressed in the general notation of (1). It is well known that solving
parametric multi-scale problems accurately can be challenging and computation-
ally costly for small scales ε and for a strong dependency of the solution on µ.

Two traditional approaches exist to reduce this computational complexity: nu-
merical multi-scale methods and model order reduction techniques. Numerical
multi-scale methods reduce the complexity of multi-scale problems with respect
to ε, while model order reduction techniques reduce the complexity of parametric
problems with respect to µ (for both see [3] and references therein).

The localized reduced basis multiscale (LRBMS) method is a combination of
both to reduce the complexity of parametric multi-scale problems with respect to
ε and µ simultaneously. It performs well, for instance in the context of two-phase
flow problems (see [1]), but still requires solving (1) on the ε scale for several
parameters µ, just like classical RB methods. Therefore, we propose an extension
to the LRBMS method which requires a smaller number of full solutions of (1) by
further incorporating localization ideas from numerical multi-scale methods.

Following the notation of [3], we consider solutions ε
µuh ∈ Uh of the parameter-

ized variational multi-scale problem

Rεµ[εµuh](vh) = 0 ∀vh ∈ Vh,(1)

with trial and test function spaces Uh, Vh : Ω ⊂ Rd → R, d = 1, 2, 3, and an ε- and
µ-dependent mapping Rεµ : Uh → V ′h. The approximation spaces Uh and Vh are
associated with a fine triangulation τh of Ω resolving the ε scale.

In general, numerical multi-scale methods capture the macroscopic behavior of
the solution in coarse approximation spaces, e.g., VH ⊂ Vh, usually associated
with a coarse triangulation TH of Ω, and recover the microscopic behavior of the
solution by local fine-scale corrections. Inserting this additive decomposition into
(1) yields a coupled system of a fine- and a coarse-scale variational problem. By
appropriately selecting trial and test spaces and defining the localization opera-
tors to decouple this system, a variety of numerical multi-scale methods can be
recovered, e.g., the multi-scale finite element method, the variational multi-scale
method and the heterogeneous multi-scale method (see [3] and references therein).

Model order reduction using reduced basis (RB) methods, on the other hand, is
based on the idea to introduce a reduced space Vred ⊂ Vh, spanned by solutions of
(1) for a limited number of parameters µ. These training parameters are iteratively
selected by an adaptive greedy procedure. Depending on the choice of the training
parameters and the nature of the problem Vred is expected to be of a significantly
smaller dimension than Vh. Additionally, if Rεµ allows for an affine decomposition
with respect to µ, its components can be projected onto Vred, which can then be
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used to effectively split the computation into an offline and online part (see [1, 3]).
In the offline phase all parameter-independent quantities are precomputed, such
that the online phase’s complexity only depends on Vred.

The idea of the combined LRBMS approach, for Uh = Vh, is to generate a local
reduced space V Tred ⊂ V Th for each coarse element of TH , given a tensor product
type decomposition of the fine approximation spaces, Vh = ⊕T∈THV Th . The coarse
reduced space is then given as VH,red := ⊕T∈THV Tred ⊂ Vh, resulting in a multi-

plicative decomposition of the solution into
ε
µuH,red(x) =

∑dim(VH,red)
i=1 uµi (x)ϕεi (x),

where the reduced basis functions ϕεi capture the microscopic behaviour of the
solution and the coefficient functions uµi only vary on the coarse triangulation.

We detail the LRBMS method in the context of linear elliptic parametric multi-
scale problems, which arise for instance as the pressure equation in the two-phase
flow context: : find ε

µuh ∈ Vh, such that −∇·(aεµ∇ ε
µuh) = fu holds in a weak sense

with homgeneous dirichlet boundary conditions. In this context, the residual in
(1) is given as Rεµ[·] := ε

µA[·]− Fµ, where ε
µA and Fµ can be expressed as

ε
µA[·] =

∑
T∈TH

ε

µA
T [·] +

∑
T,S∈TH

ε

µA
T,S [·], Fµ =

∑
T∈TH

FTµ ,

where the coupling operators
ε
µA

T,S are given as in the SWIP discontinuous
galerkin context for any nontrivial combination of T, S ∈ TH (see [1] for details).
The local opearators and functionals

ε
µA

T and FTµ can be given by any suitable dis-
cretization inside the coarse element T , for instance by a continuous finite element
discretization in a local fine space V Th of piecewise linear polynomials on the fine
triangulation inside the coarse element T . The local reduced spaces V Tred :=< ΦT >
are then spanned by local reduced bases ΦT which are computed by restricting and
compressing global solution snapshots.

Here we propose an online enrichment step as an addition to the LRBMS
method to reduce the need for global solution snapshots. While it is not feasible
in the RB framework to compute solution snapshots during the online phase, the
LRBMS frameworks allows us to carry out local computations in the online phase
to enrich the local reduced bases. The idea of the LRBMS method with online en-
richment is as follows: the initial construction of the local reduced bases is carried
out as described above but using fewer training parameters and thus less global
snapshots. Given local error indicators ||| εµuh|T − ε

µuH,red|T |||T ≤ η
T
red(εµuH,red) we

efficiently asses the quality of the reduced solution ε
µuH,red ∈ VH,red with respect to

the reference solution ε
µuh ∈ Vh during the online phase and select coarse elements

T̂H ⊆ TH where the local reduced bases are insufficient for the current parameter

µ. In a local offline phase we compute a local correction function ϕT
δ

cor ∈ V T
δ

h for

each T ∈ T̂H on an oversampled domain T ⊂ T δ by solving
ε

µA
T δ [ϕT

δ

cor](vh) = FT
δ

µ (vh)−
ε

µA
T δ [εµuH,red|T δ ](vh) ∀vh ∈ V T

δ

h .

We then restrict this correction function to T and enrich the existing local reduced

basis on T by adding ϕT
δ

cor|T after orthonormalization. This process is repeated
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until the quality of the reduced solution meets the prescribed torelance again.
After this local offline phase all quantities are made available in a reduced fashion
again and the online phase continues. We repeat this process for each parameter,
which is not yet captured by the local reduced bases.

We exemplify the local offline phase by a 2d thermalblock problem, illustrated
in figure 1, where the local reduced bases have been trained in the offline phase
with one global solution snapshot to µtrain, computed on a fine triangulation τh
with 2500 elements utilizing the discretiation framework Dune-Fem [2]. During
the online phase we solve for a test parameter µtest which only differs from µtrain

locally in T0 and T2. Since the reduced basis is insufficient for µtest, a local offline
phase is started to enrich the local bases until the indicated errors fall below 5e−4

(figure 1, right). As indicators ηTred we use the true relative error in the local energy
norm. For a local oversampling size of ten for example (red line, circular markers),
the error torelance is reached after 14 iterations. The resulting sizes of the local
reduced bases, (|Φ0|, |Φ1|, |Φ2|, |Φ3|) = (14, 6, 14, 6), show the local influence of the
parameter component µ2 and the symmetry of the problem (figure 1, left).

Figure 1. Thermalblock example with the values of the piecewise con-

stant parametric diffusion ε
µa given by µ = (µ0, µ1, µ2)′ and the coarse trian-

gulation TH = ∪3
i=0Ti (left). Error evolution during the local offline phase

(right): maximum local relative error for µtest = (0.1, 1, 0.01)′ against size

of the coarse reduced space with the local reduced bases trained only with

µtrain = (0.1, 1, 1)′ for several sizes of oversampling layers (colored).
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[2] A. Dedner, R. Klöfkorn, M. Nolte and M. Ohlberger, A generic interface for parallel and
adaptive discretization schemes: abstraction principles and the Dune-Fem module, Com-

puting 90(3-4), (2010), 165–196

[3] M. Ohlberger., Error control based model reduction for multi-scale problems., In A.
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