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1 Introduction lecture 1

Inverse Problem: Infer from an effect the cause, using a mathematical model.

• genuine inverse problem:

effect is measured/observed, uniqueness of cause is desired

Example 1 (Medical image reconstruction). Construct from X-ray-CT measurement the X-ray
attenuation (i. e. an image of the anatomy) within the patient.

• optimal control:

try to achieve desired effect by control of the cause (usually combined with optimization of further
objective functionals), high regularity of cause is desired

Example 2 (Cloaking). Design the distribution of an optical material around a ball such that a
light wave front behind the ball looks undisturbed (the ball is invisible).

Associated forward problem: mathematical model which computes/produces the effect from the
cause
A forward problem can typically be described by a (potentially nonlinear) map

A : X → Y

for X the set or space of causes and Y of effects; the inverse problem thus is

given y ∈ Y, find x ∈ X with Ax = y. (1)

Experimental design: For a sought, not directly measurable quantity of interest, choose/design a for-
ward problem and associated measurements so that reconstructing the sought quantity via the associated
inverse problem becomes as simple as possible.

Example 3 (X-ray directions). Choose X-ray directions in CT such that they are few (reduction of
radiation burden), but still allow a very good image reconstruction.

Definition 4 (Well-posedness after Hadamard). An inverse problem (1) is called well-posed if

1. it has a solution x

2. which is unique

3. and continuously depends on y.

Remark 5 (Well-posedness). Role of (1), (2) is clear. (3) is necessary, since the measurements y are
never exact, but alwas contain small errors, so-called noise. These errors should not lead to completely
different solutions x.

Remark 6 (Typical inverse problems). Inverse problems in applications are typically ill-posed, i. e. one
of the conditions is violated (often all).

Regularization: Method to produce a well-posed approximation for an inverse problem, i. e. x = A−1y
is replaced by some x = By.

Example 7 (Tikhonov-regularization). The inverse problem is replaced with

xα = arg min
x∈X

‖Ax− y‖2Y + α‖x‖2X .

Definition 8 (Space and convergence notions).

1. A Banach space X is a complete normed vector space (e. g. L2((0, 1))).

2



2. A Hilbert space is a Banach space, whose norm is induced by an inner product (·, ·).

3. The dual space X∗ to a Banach space X is the space of all linear continuous maps ` : X → R with
norm ‖`‖X∗ = sup‖x‖X≤1 |`(x)|.
One also writes `(x) = 〈`, x〉X∗,X = 〈`, x〉.

4. xn ∈ X converges weakly to x ∈ X, xn ⇀ x, if `(xn)→n→∞ `(x) ∀` ∈ X∗.

5. `n ∈ X∗ converges weakly-∗ to ` ∈ X∗, xn ⇀ x, if `n(x)→n→∞ `(x) ∀x ∈ X.

6. Let A : X → Y be linear and continuous. The adjoint operator A∗ : Y ∗ → X∗ is defined by

〈A∗y′, x〉 = 〈y′, Ax〉 ∀x ∈ X, y′ ∈ Y ∗.

7. The Hilbertian adjoint AH : Y → X of a linear and continuous operator A : X → Y is defined by

(AHy, x) = (y,Ax) ∀x ∈ X, y ∈ Y.

8. A functional f : X → R is called weakly lower semicontinuous if lim infn→∞ f(xn) ≥ f(x) for all
xn ⇀ x. Weakly-* lower semicontinuous is defined analogously.

Theorem 9 (Banach space properties). 1. Riesz’ representation theorem: A Hilbert space X is iso-
metrically isomorphic to its dual space X∗ via the Riesz isomorphism RX : X∗ 3 ` 7→ x` ∈ X with
〈`, ·〉 = (x`, ·). Consequently, AH = R−1

X A∗RY .

2. Banach–Alaoglu theorem: Let X be a separable or reflexive Banach space. The unit ball of X∗ is
weakly-* sequentially precompact.

3. ‖ · ‖X is weakly, ‖ · ‖X∗ weakly-* lower semi-continuous.

Theorem 10 (Well-posedness of Tikhonov regularization). Let X,Y be Hilbert spaces, A : X → Y be
linear and continuous, then the Tikhonov regularization is well-posed.

Proof. If x is a minimizer, then for Ey(x) = ‖Ax− y‖2Y + α‖x‖2X and any ϕ ∈ X we have

0 =
d

dt
Ey(x+ tϕ)|t=0 = 2(Ax− y,Aϕ) + 2α(x, ϕ)

⇔ (Ax,Aϕ) + α(x, ϕ)︸ ︷︷ ︸
=:B(x,ϕ)

= (y,Aϕ)︸ ︷︷ ︸
=:`(ϕ)

.

Now

• |B(x, ϕ)| ≤ (α+ ‖A‖2)‖x‖X‖ϕ‖X ,

• B(x, x) ≥ α‖x‖2X ,

• |`(ϕ)| ≤ ‖y‖Y ‖A‖‖ϕ‖X ,

so by Lax–Milgram ∃! solution x that continuously depends on y. It remains to show that this x really
is a minimizer.

Ey(z)− Ey(x) = ‖Az −Ax‖2Y + α‖z − x‖2X + 2(Ax− y,A(z − x)) + 2α(x, (z − x))

= ‖Az −Ax‖2Y + α‖z − x‖2X > 0.
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2 Illustration via integration/differentiation

Forward problem: X = Y = L2((0, 1)), Ax =
(
s 7→

∫ s
0
x(t) dt

)
(linear)

Example 11 (KATRIN experiment). Many electrons of a specific energy (normalized to 1) are sent
into a medium (Xenon gas cloud). One wants to quantify the interaction, i. e. how many electrons are
decelerated by how much energy, i. e. x ∈ X is the probability density of the energy loss ∈ [0, 1]. (The
idea is that from x one then read off the neutrino mass.) One can construct a barrier which blocks all

electrons below a minimum energy s, and one can count the electrons behind, i. e. y(s) =
∫ 1−s

0
x(t) dt.

source medium barrier detector

h - - -

The measurement yδ contains errors, e. g. additive white Gaussian noise of standard deviation δ > 0, i. e.

yδ = y + nδ

with nδ the realization of a random variable such that Wa,b =
∫ b
a
nδ(t) dt has zero mean and variance

(b − a)δ2 for all 0 ≤ a ≤ b ≤ 1 and such that Wa,b and Wc,d have covariance rδ2 with r the length of
[a, b] ∩ [c, d].

Theorem 12 (Non-well-posedness of differentiation). Consider the inverse problem Ax = y.

1. In general it has no solution.

2. If a solution exists, it is unique,

3. but not continuous in y ∈ Y .

Proof. (2) Fundamental theorem of calculus ⇒ x(s) = y′(s), and the weak derivative is unique.
(1) If y /∈W 1,2((0, 1)), it has no weak derivative in X.
(3) Set ∆y = sin(nt), then ‖∆y‖Y ≤ 1, but

A−1(y + ∆y)−A−1y‖X = ‖t 7→ n cosnt‖X ≥ Cn

gets arbitrarily big for n→∞.

Tikhonov-regularization :

xα = arg min
x∈X

∫ 1

0

∣∣∣∣∫ s

0

x(t) dt− yδ(s)
∣∣∣∣2 ds+ α

∫ 1

0

|x(t)|2 dt.

Set yα = Axα, then

yα = arg min
y∈W 1,2((0,1)),y(0)=0

∫ 1

0

∣∣y − yδ∣∣2 ds+ α

∫ 1

0

|y′|2 dt

⇔ yα solves

{
−αy′′α + yα − yδ = 0 on (0, 1)

yα(0) = 0, y′α(1) = 0,

thus yα is the solution of an implicit Euler step with stepsize α of the heat equation with homogeneous
Dirichlet-/Neumann-boundary conditions.
⇒ yδ first is smoothed to yα!
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lecture 2Error estimate: Optimality condition: For all ϕ ∈W 1,2((0, 1)) with ϕ(0) = 0 we have

α(y′α, ϕ
′) + (yα, ϕ) = (yδ, ϕ)

α(y′, ϕ′) + (y, ϕ) = (y − αy′′, ϕ)

difference: α(y′α − y′, ϕ′) + (yα − y, ϕ) = (yδ − y + αy′′, ϕ).

With ϕ = yα − y we get

⇒ α‖y′α − y′‖2L2 + ‖yα − y‖2L2 = (yδ − y + αy′′, yα − y)
Young

≤ ‖yδ − y‖2L2 + α2‖y′′‖2L2 + 1
2‖yα − y‖

2
L2

⇒ ‖xα − x‖2L2 ≤ 1
α‖y

δ − y‖2L2 + α‖y′′‖2L2

⇒ for ‖yδ − y‖L2 = δ, the optimal choice α = δ
‖y′′‖L2

yields

‖xα − x‖L2 ≤ 2
√
‖y′′‖L2

√
δ

⇒ even with regularization we have reconstruction error � measurement error

3 Some classical inverse/forward problems

1. Differentiation/Integration

2. X-ray transform

Definition 13 (X-ray transform). Let C′ = {(θ, s) ∈ Sd−1 × Rd | s ∈ θ⊥}. The X-ray transform
on B1(0) ⊂ Rd is the linear map

P : L1(B1(0))→ L1(C′), Pu(θ, s) =

∫
{x∈B1(0) | x=s+tθ for some t∈R}

u(x) dL1(x).

Remark 14 (Other function spaces). The definition can also be extended to other function spaces
such as Radon measures on B1(0) or on Rd.

Example 15 (Computer tomography, CT). An X-ray is taken from every direction θ ∈ S2. The
attenuation of the X-ray at position s+ tθ is proportional to the ray intensity I and the attenuation
coefficient u at that position, thus

d
dtI(s+ tθ) = −u(s+ tθ)I(s+ tθ) ⇒ I(s+ θ) = I(s− θ) exp

(
−
∫ 1

−1

u(s+ tθ) dt

)
.

The measured intensity change is I(s+θ)
I(s−θ) = exp−Pu(θ, s), thus Pu(θ, s) = log I(s−θ)

I(s+θ) .

Theorem 16 (X-ray transform). P : L1(B1(0))→ L1(C′) is continuous.

Proof.
∫
C′ |Pu|d(θ, s) ≤

∫
Sd−1

∫
θ⊥

∫
{x∈B1(0) | x=s+tθ for some t∈R} |u(x)|dL1(x) dsdθ

Fubini
=

∫
Sd−1 ‖u‖L1 dθ =

|Sd−1|‖u‖L1 .

Remark 17 (CT in other spaces). Similarly in Lp.

3. Parameter identification

Determine coefficients of a PDE problem (e. g. inside PDE or IC or BC) from observation of the
solution in a subdomain (e. g. on the boundary) for different right-hand sides (of the PDE or IC or
BC).

Example 18 (Oil production). Let Ω ⊂ R3 with smooth boundary represent rock and x ∈ X =
C(Ω) with x ≥ c > 0 represent the rock permeability. The measured liquid pressure within the rock
is y ∈ Y = W 1,2(Ω), and A : X → Y maps x onto the solution y of

−div(x(z)∇y(z)) = f(z) in Ω plus BC (Darcy flow),

where f ∈ L2(Ω) is a controllable source.
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Remark 19 (Nonlinearity of parameter identification). Parameter identification problems are typ-
ically nonlinear, e. g. A(2x) 6= 2A(x) for the above example.

Remark 20 (Solution formula in 1D). In 1D a single right-hand side f suffices, and we can derive
a solution formula: Let Ω = (0, 1) with homogeneous Neumann boundary conditions on the left
boundary, then

x(z)y′(z) = −
∫ z

0

f(s) ds.

If f > 0 or f < 0, we have
∫ z

0
f ds 6= 0, thus y′(z) 6= 0 and

x(z) =
−
∫ z

0
f(s) ds

y′(z)
.

For f = 0, however, x cannot be identified. The problem is ill-posed because of the differentiation;
in addition there is error amplification for small y′.

Definition 21 (Dirichlet-to-Neumann map). Let Ω ⊂ Rd with smooth boundary, a ∈ C0(Ω) with
a ≥ c > 0. The linear map

Λa : H
1
2 (∂Ω)→ H−

1
2 (∂Ω), f 7→ a

∂u

∂n
for u solution of

{
−div(a∇u) = 0 in Ω,

u = f on ∂Ω

is called Dirichlet-to-Neumann map.

(H
1
2 (∂Ω) and H−

1
2 (∂Ω) are special Hilbert spaces, the traces of H1 and L2 functions.)

Example 22 (Electrical impedance tomography, EIT). Ω ⊂ Rd patient body, x ∈ X = C0(Ω) with

x ≥ c > 0 is electrical conductance, Y = L(H
1
2 (∂Ω), H−

1
2 (∂Ω)), Ax = Λx. Λx is measured by

applying different voltages f and measuring the resulting currents.

Remark 23 (1D EIT). For Ω = (a, b) we have Y = L(R2,R2) = R2×2. One measurement
y ∈ R2×2 cannot suffice to reconstruct a function x ∈ C0(Ω). For higher-dimensional domains
reconstructions turn out to be possible.

4. Inverse scattering

Determine an object based on its scattering of (acoustic or electromagnetic) waves = special case
of parameter identification for wave equation, Maxwell’s equations, Schrödinger equation or other
hyperbolic equations.

Example 24 (Periodic wave field). The density or pressure U of an acoustic wave satisfies

∂2U

∂t2
=

1

n2
∆U,

1

n(z)
= speed of sound (= 1 outside object).

For time-harmonic (i. e. periodic) waves U(z, t) = eiktu(z) this turns into Helmholtz’ equation

∆u+ k2n2u = 0

for the observed wave u. The incoming wave (which is sent) satisfies ∆ui + k2ui = 0, the scattered
wave is us = u− ui and satisfies

∆us + k2us = k2(1− n2)(ui + us).

If O ⊂ B1(0) is the sought scattering object, one has 1 − n2 = cχO for some fixed c > 0; the
measurement typically is the far-field wave u|∂BR(0) with R� 1, i. e.

x ≡ O, y ≡ {u|∂BR(0) for a number of incoming waves ui of different frequencies}, A : x 7→ y.

Variation: Sound is absorbed on ∂O (u|∂O = 0) or reflected ( ∂u∂n = 0) or a mixture ( ∂u∂n + λu = 0).
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4 Linear integral operators lecture 3

Many forward operators in inverse problems are linear integral operators, thus they form an interesting
set of examples.

Definition 25 (Integral operator). Let Σ ⊂ Rn,Ω ⊂ Rd measurable and k : Σ × Ω → R measurable.
The linear integral operator with integral kernel k is defined for measurable functions u : Ω→ R as

Ku : Σ→ R, (Ku)(x) =

∫
Ω

k(x, y)u(y) dy.

Example 26 (Integration). Let Σ = Ω = (0, 1), k(x, y) = 1 if x ≥ y and k(x, y) = 0 else. Then

(Ku)(x) =
∫ 1

0
k(x, y)u(y) dy =

∫ x
0
u(y) dy.

Example 27 (Convolution). Let Σ = Ω = Rd, k(x, y) = G(x−y) for a measurable function G : Rd → R.
Then Ku = G ∗ u.

Remark 28 (X-ray transform). Generalizing k to measures (which we don’t in this lecture), also the
X-ray transform becomes a linear integral operator.

Theorem 29 (Continuity of integral operator). Let Σ,Ω open and bounded and k ∈ Lq(Σ × Ω) with
1
p + 1

q = 1
r . Then K : Lp(Ω) → Lr(Σ), (Ku)(x) =

∫
Ω
k(x, y)u(y) dy is well-defined and continuous with

‖Ku‖Lr ≤ C‖k‖Lq‖u‖Lp .

Proof. ‖Ku‖rLr =

∫
Σ

|Ω|r
∣∣∣∣ 1

|Ω|

∫
Ω

k(x, y)u(y) dy

∣∣∣∣r dx

≤ |Ω|r−1

∫
Σ

∫
Ω

|k(x, y)|r|u(y)|r dy dx

≤ |Ω|r−1

(∫
Σ×Ω

|k(x, y)|rq/r dxdy

)r/q (∫
Σ×Ω

|u(y)|rp/r dxdy

)r/p
= |Ω|r−1|Σ|r/p‖k‖rLq‖u‖rLp .

Theorem 30 (Young). Let Σ = Ω = Rd, k(x, y) = G(x − y) for a G ∈ Lq(Rd) with 1
p + 1

q = 1 + 1
r .

Then K : Lp(Ω) → Lr(Σ), (Ku)(x) =
∫

Ω
k(x, y)u(y) dy is well-defined and continuous with ‖Ku‖Lr ≤

‖G‖Lq‖u‖Lp .

Proof. |u ∗G(x)| ≤
∫

(|u(x− y)|p|G(y)|q)1/r|u(x− y)|1−p/r|G(y)|1−q/r dy

≤ ‖(|u(x− ·)|p|G|q)1/r‖Lr︸ ︷︷ ︸
=(

∫
|u(x−y)|p|G(y)|q dy)

1
r

‖|u|1−p/r‖
L

1
1
p
− 1
r︸ ︷︷ ︸

=‖u‖1−p/r
Lp

‖|G|1−q/r‖
L

1
1
q
− 1
r︸ ︷︷ ︸

=‖G‖1−q/r
Lq

⇒ ‖u ∗G‖rLr =

∫
|u ∗G|r dx ≤ ‖u‖r−pLp ‖G‖

r−q
Lq

∫ ∫
|u(x− y)|p|G(y)|q dy dx.︸ ︷︷ ︸

=
∫ ∫
|u(x−y)|p dx|G(y)|q dy=‖u‖p

Lp
‖G‖q

Lq

5 Compact operators

Most forward operators in inverse problems are compact operators.

Definition 31 (Compact operator). Let X,Y be Banach spaces. A linear operator K : X → Y is called
compact if for any bounded set B ⊂ X the image K(B) is precompact in Y .

Corollary 32 (Sequences under compact operator). K compact ⇔ Kxn contains a convergent subse-
quence for every bounded sequence xn ∈ X.

Proof. ‘⇒’ Choose B = {x1, x2, . . .}, then {Kx1,Kx2, . . .} is compact; in a metric space compact =
sequentially compact.
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‘⇐’ Each sequence xn ∈ B is bounded ⇒ ∃ convergent subsequence of Kxn ⇒ K(B) is sequentially
compact and thus compact.

Corollary 33 (Weak-strong convergence). Let X be reflexive (i. e. X∗∗ = X). K compact ⇔ xn ⇀ x
implies Kxn → Kx.

Proof. ‘⇒’ xn is bounded ⇒ Kxn → y ∈ Y (thus also Kxn ⇀ y) for a subsequence; furthermore
y = Kx because of Kxn ⇀ Kx. Now let xk be a subsequence with ‖Kxk − y‖Y > c > 0, then
again Kxk contains a convergent subsequence with Kxk → Kx = y  

‘⇐’ Banach–Alaoglu: Every bounded sequence xn is weakly precompact.
Eberlein–Šmulian: In a Banach space weakly compact = sequentially weakly compact.
⇒ xn has weakly convergent subsequence  use previous corollary.

Corollary 34 (Finite-dimensional image). Any linear continuous operator K with finite-dimensional
image is compact.

Proof. B bounded implies KB bounded and finite-dimensional, thus precompact by Heine–Borel.

Theorem 35 (Operations on compact operators). Let X,Y, Z be Banach spaces, K,L linear operators.

1. K,L : X → Y compact ⇒ K + L compact

2. K : X → Y compact, a real ⇒ aK compact

3. K : X → Y or L : Y → Z compact ⇒ LK : X → Z compact

Proof. 1. Let xn be bounded sequence ⇒ Kxnk → y ∈ Y for subsequence xnk ;
xnk bounded ⇒ Lxnkl → ỹ ∈ Y for subsequence xnkl
⇒ (K + L)xnkl → y + ỹ.

2. trivial

3. If K compact: Let xn be bounded ⇒ Kxn → y ∈ Y for subsequence ⇒ LKxn → Ly for same
subsequence
If L compact: Let xn be bounded ⇒ Kxn is bounded ⇒ LKxn has convergent subsequence

Theorem 36 (Schauder’s theorem). Let X,Y be Banach spaces, K : X → Y linear. K compact ⇔ K∗

compact.

Proof. ‘⇒’ Let BY ∗ be the closed unit ball in Y ∗, BX the one in X.

– BY ∗ is equicontinuous, since |〈y′, y〉 − 〈y′, ỹ〉| ≤ ‖y′‖‖y − ỹ‖Y ≤ ‖y − ỹ‖Y ∀y, ỹ ∈ Y, y′ ∈ BY ∗
– let E = KBX & note that E is compact

– let y′n ∈ BY ∗ be a sequence
Arzelà–Ascoli

=⇒ ∃ uniformly convergent subsequence y′n|E → y′|E
⇒ K∗y′n is Cauchy (and thus K∗ compact), since

‖K∗y′n −K∗y′m‖ = sup
x∈BX

|〈K∗y′n, x〉 − 〈K∗y′m, x〉| = sup
z∈E
|〈y′n, z〉 − 〈y′m, z〉| −−−−−→

m,n→∞
0

‘⇐’ Let i : X → X∗∗, j : Y → Y ∗∗ be the inclusion.

– K∗∗ is compact (by ‘⇒’), and K∗∗ ◦ i = j ◦K
– jKBX = K∗∗iBX ⊂ K∗∗BX∗∗ , the latter is precompact in Y ∗∗

– ⇒ KBX is precompact in Y :
xn ∈ BX sequence ⇒ subsequence jKxn is Cauchy

⇒ ‖Kxn −Kxm‖Y
Hahn–Banach

= sup
y′∈BY ∗

〈y′,Kxn −Kxm〉 = sup
y′∈BY ∗

〈y′, jKxn − jKxm〉 −−−−−→
m,n→∞

0

Theorem 37 (Operator norm of compact operators). Let X,Y be Hilbert spaces, K : X → Y linear
and compact. There exists x ∈ X with ‖x‖ = 1 and ‖Kx‖ = ‖K‖.
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Remark 38 (Norm of non-compact operators). In general false for non-compact operators (homework).

Proof. • let yn ∈ Y with ‖yn‖ = 1 and ‖KHyn‖ → ‖KH‖ = ‖K‖

• KHyn → z ∈ X along a subsequence (since KH is compact), and ‖z‖ = limn→∞ ‖KHyn‖ = ‖K‖

• ‖KHyn‖2 = (yn,KK
Hyn) ≤ ‖KKHyn‖ ≤ ‖K‖2, thus ‖KKHyn‖ → ‖K‖2

• set x = z/‖z‖, then ‖Kx‖ = ‖Kz‖/‖K‖ = limn→∞ ‖KKHyn‖/‖K‖ = ‖K‖

lecture 4Compactness of an operator can be shown via approximation by compact operators (Fredholm considered
compact operators as limits of operators with finite rank, 1900; the use and analysis of the below
compactness condition originates from Friqyes Riesz, 1918).

Theorem 39 (Limit of compact operators). Let X,Y be Banach spaces and Kn : X → Y a sequence of
compact operators with Kn → K, then K is compact.

Proof. • Let xk ∈ X be bounded sequence, ‖xk‖X ≤ C <∞ ∀k

• Let I1 ⊂ {x1, x2, . . .} be subsequence such that limk→∞,xk∈I1 K1xk exists,
I2 ⊂ I1 one such that limk→∞,xk∈I2 K2xk exists,
In ⊂ In−1 one such that limk→∞,xk∈In Knxk exists.

• Let zk be the kth element of Ik, then limk→∞Knzk exists ∀n

• Kzk is Cauchy: Let ε > 0, then choose n such that ‖Kn − K‖ ≤ ε
3C , and choose N such that

‖Knzl −Knzm‖Y ≤ ε
3 ∀m, l > N .

⇒ ‖Kzl −Kzm‖Y ≤ ‖Kzl −Knzl‖Y︸ ︷︷ ︸
≤‖K−Kn‖‖zl‖Y ≤ ε3

+ ‖Knzl −Knzm‖Y︸ ︷︷ ︸
≤ ε3

+ ‖Knzm −Kzm‖Y︸ ︷︷ ︸
≤ ε3

≤ ε ∀m, l > N

Theorem 40 (Compactness of integral operators). Let Σ ⊂ Rn,Ω ⊂ Rd open and bounded and k ∈
Lq(Σ× Ω) with 1

p + 1
q = 1

r , q <∞. Then K : Lp(Ω)→ Lr(Σ), Ku(x) =
∫

Ω
k(x, y)u(y) dy is compact.

Proof. • Wlog we may assume that k is Lipschitz with |k(x1, y1)− k(x2, y2)| ≤ L|(x1, y1)− (x2, y2)|:

– C0,1(Rn+d) is dense in Lq(Σ× Ω) ⊂ Lq(Rn+d)

– let kn ∈ C0,1(Rn+d) with kn
Lq→ k, Knu(x) =

∫
Ω
kn(x, y)u(y) dy

– ‖Kn −K‖ ≤ C‖kn − k‖Lq →n→∞ 0

– if Kn compact, then also K by previous result

• approximate K by Kn with finite-dimensional image:

– for n ∈ N let (Ωni )i be finite partition of Ω with diam(Ωni ) < 1
n

– set φni (x) =

∫
Ωni

k(x, y) dy/|Ωni | (average)

ψni (y) =

{
1 if y ∈ Ωni
0 else

kn(x, y) =
∑
i

φni (x)ψni (y)

– |kn(x, y)− k(x, y)| = |φni (x)− k(x, y)| = |
∫

Ωni
k(x, z)− k(x, y) dz|/|Ωni | ≤ L

n for y ∈ Ωni

⇒ kn
Lq→ k, Kn → K with Knu(x) =

∫
Ω
kn(x, y)u(y) dy

• Knu =
∑
i φ

n
i

∫
Ωni
u(y) dy ∈ span{φn1 , φn2 , . . .} ⇒ Kn compact ⇒ K compact

Remark 41 (Compactness of integral operators). An analogous proof partitions Σ instead of Ω (home-
work).
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Boundedness of the domain is important for compactness.

Theorem 42 (Convolution on unbounded domain is not compact). Let Σ = Ω = Rd, k(x, y) = G(x−y)
for some G ∈ Lq(Rd) with 1

p + 1
q = 1 + 1

r . Then K : Lp(Ω) → Lr(Σ), Ku(x) =
∫

Ω
k(x, y)u(y) dy is not

compact.

Proof. Homework (construct a sequence un ∈ Lp(Rd) by translating a fixed function and show that Kun
contains no convergent subsequence).

We now show that compact operators do not possess a continuous inverse (in infinite dimensions).

Theorem 43 (Almost orthogonal element/Riesz lemma). Let X be a Banach space and U ( X a closed
subspace. Then for every ε > 0 there exists an x ∈ X with ‖x‖X = 1 and dist(x, U) = inf{‖y− x‖X | y ∈
U} > 1− ε.

Proof. • choose v ∈ X \ U and u ∈ U with ‖v − u‖X < dist(v,U)
1−ε

• set x = v−u
‖v−u‖X , then ‖x‖X = 1 and

dist(x, U) = inf{‖ v−u
‖v−u‖X − z‖X | z ∈ U} = 1

‖v−u‖X inf{‖v − (u+ ‖v − u‖Xz)‖X | z ∈ U}

= 1
‖v−u‖X dist(v, U) > 1− ε

Corollary 44 (Closed balls are noncompact in infinite dimensions). Let X be an infinite-dimensional
Banach space. There exists a sequence xn ∈ X with ‖xn‖X = 1 and ‖xn − xm‖ ≥ 1

2 for all m 6= n (thus
xn contains no limit point).
In particular, the closed unit ball in X is not compact, and the identity is not a compact operator on X.
A closed ball on a Banach space is compact iff the space is finite-dimensional.

Proof. • pick x1 ∈ X with ‖x1‖X = 1

• pick xn ∈ X \ span{x1, . . . , xn−1} with ‖xn‖X = 1 & dist(xn, span{x1, . . . , xn−1}) > 1
2

Theorem 45 (Compact operators in infinite dimensions have no bounded inverse). Let X be an infinite-
dimensional Banach space, Y a Banach space and K : X → Y compact. The K has no bounded inverse.
In particular, the inverse problem Kx = y is ill-posed.

Proof. • let xn the previous sequence & yn = Kxn

• K compact ⇒ ∃ convergent subsequence yn → y ∈ Y ,

• but xn = K−1yn does not converge

Theorem 46 (Bounded inverse theorem). Let X,Y be Banach spaces. A bijective linear continuous
operator L : X → Y has a continuous inverse.

Proof. L is surjective and thus by the open mapping theorem open. Thus preimages LU of open sets
U ⊂ X under L−1 are again open.

Note: The previous result only holds on Banach spaces! Consequently, on Banach spaces, compact
operators cannot be bijective, thus have no inverse!

Remark 47 (Conditional stability). Sometimes the inverse is continuous on certain subsets of the
image (one speaks of conditional stability): E. g., let X,Y be Hilbert spaces, K : X → Y continuous,
xi = KHwi, yi = Kxi, i = 1, 2, then

‖x1−x2‖2X = (x1−x2, x1−x2) = (x1−x2,K
∗(w1−w2)) = (y1−y2, w1−w2) ≤ ‖y1−y2‖Y (‖w1‖Y +‖w2‖Y )

⇒ For WC = {x ∈ X |x = KHw, ‖w‖Y < C} there is a Hölder continuous inverse to K : WC → KWC .
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6 The Riesz theorems lecture 5

Our next aim ist to understand the spectrum of compact operators K : X → X and their singular value
decomposition (SVD). As for matrices, size differences of the singular values contain information about
the stability of the inversion. The theory was developed by Friqyes Riesz. In this section we present the
three main preparatory theorems that bear his name, which consider the operator I −K (which should
remind us of eigenvalues and eigenvectors). We write ‖ · ‖ for ‖ · ‖X .

Theorem 48 (Riesz’ 1. theorem). Let X be a normed vector space, K : X → X linear and compact.
The kernel of I −K is finite-dimensional.

Proof. • assume, ker(I −K) is infinite-dimensional

• let xn ∈ ker(I −K) bounded sequence without converging subsequence (Riesz lemma)

• xn = Kxn, however, has a convergent subsequence  

Theorem 49 (Riesz’ 2. theorem). Let X be a normed vector space, K : X → X linear and compact.
Then the range ran (I −K) is closed.

Proof. • let x̃n ∈ X and y ∈ X with (I −K)x̃n → y

• set xn = arg min{‖x‖2 |x ∈ x̃n + ker(I −K)}

– xn is well-defined: minimizes quadratic functional on finite-dimensional space (Riesz’ 1. thm.)

– (I −K)xn → y by definition

– xn is bounded: Otherwise,

(I −K)xn/‖xn‖X → 0
Kxn/‖xn‖ → z for subsequence

}
⇒ xn
‖xn‖

→ z & (I −K)z = 0

⇒ 1 =
dist(xn, ker(I −K))

‖xn‖
≤ ‖xn − ‖xn‖z‖

‖xn‖
=

∥∥∥∥ xn
‖xn‖

− z
∥∥∥∥→ 0  

• along a subsequence, Kxn → w ∈ X, thus ‖xn − y − w‖ ≤ ‖xn −Kxn − y‖+ ‖Kxn − w‖ → 0

• continuity of (I −K) ⇒ y = limn→∞(I −K)xn = (I −K)(y + w)

Theorem 50 (Riesz’ 3. theorem). Let X be a normed vector space, K : X → X linear and compact.
Then there exists r ∈ N such that

ker(I −K)l ( ker(I −K)l+1, ran (I −K)l ) ran (I −K)l+1, if l < r,

ker(I −K)l = ker(I −K)l+1, ran (I −K)l = ran (I −K)l+1, if l ≥ r.

Furthermore, X = ker(I −K)r ⊕ ran (I −K)r.

Proof. • set Vl = ran (I −K)l and show its properties:

– Vl ⊃ Vl+1 by definition

– Vl = Vl+1 ⇒ Vl = Vm for all m > l

– assume Vl ) Vl+1 for all l

∗ let xl ∈ Vl with ‖xl‖ = 1 and dist(xl, Vl+1) ≥ 1
2 (Riesz lemma & Riesz’ 2. thm.)

∗ ‖Kxl −Kxm‖ = ‖xl − xm − (I −K)(xl − xm)‖ = ‖xl − (xm + (I −K)(xl − xm))︸ ︷︷ ︸
∈Vl+1

‖ > 1
2

for all m > l
⇒ Kxl has no convergent subsequence  

• set Wl = ker(I −K)l and show its properties (potentially with different r): Homework (same way)

• dim(ker(I −K)l) = dim(coker(I −K)l) for all l:

11



– it suffices to show this for l = 1 (since (I −K)l = (I − L) for a compact operator L)

– it suffices to show this for injective I −K:
If dim(ker(I − T )) = dim(coker(I − T ))(= 0) for every compact T with injective I − T , then:

∗ “restrict I−K (or equivalently K) to a subspace Z on which I−K is injective by modding
out the kernel, take I − T = (I −K)|Z”

· Y = ker(I −K)r = ker(I −K)r+1 satisfies (I −K)Y ⊂ Y , thus KY ⊂ Y
· set Z = X/Y with norm ‖z‖Z = inf{‖x‖ |x ∈ z + Y }
· K induces a compact operator T : Z → Z

· I − T is injective:
otherwise there would be x /∈ Y with (I −K)x ∈ Y , thus x ∈ ker(I −K)r+1 = Y

∗ “replace ker(I −K) by the kernel of a finite-dimensional operator L
for which thus dim kerL = dim cokerL”

· set L : Y → Y , L = (I −K)|Y , then ker(I −K) = kerL

· dim(ker(I−K))=dim(kerL)=dim(cokerL), since Y finite-dimensional (Riesz 1. thm.)
= dim(coker(I −K)), since dim(coker(I − T )) = dim(ker(I − T )) = 0

– still to show (for injective I −K): coker(I −K) = {0}, i. e. I −K surjective

∗ assume ran (I −K) ( X, then also ran (I −K)l ) ran (I −K)l+1 for all l  ,
since otherwise there would for every x ∈ X be a y ∈ X with (I −K)l+1y = (I −K)lx
I−K injective⇒ (I −K)ly = (I −K)l−1x ⇒ . . . ⇒ (I −K)y = x  

• either ker(I −K)l = ker(I −K)l+1 & ran (I −K)l = ran (I −K)l+1 or
ker(I−K)l 6= ker(I−K)l+1 & ran (I−K)l 6= ran (I−K)l+1 (else contradiction to previous point)
⇒ critical exponent r is the same for kernel and range

• let 0 = a+ b with a ∈ ker(I −K)r, b = (I −K)rβ
⇒ 0 = (I −K)ra+ (I −K)rb = (I −K)2rβ
⇒ β ∈ ker(I −K)2r = ker(I −K)r ⇒ b = 0 ⇒ a = 0
dim(ker(I−K)r)=dim(coker(I−K)r)⇒ X = ker(I −K)r ⊕ ran (I −K)r

7 The SVD of compact operators on Hilbert spaces lecture 6

Definition 51 (Spectrum). Let X be a normed C-vector space, K : X → X linear and bounded.

1. The spectrum of K is the set σ(K) = {λ ∈ C |λI −K has no continuous inverse}.

2. An eigenvalue of K is a λ ∈ C such that there exists a corresponding eigenvector u ∈ X with
Ku = λu.

Theorem 52 (Spectrum of compact operators). Let X be an infinite-dimensional Banach space, K :
X → X compact.

1. 0 ∈ σ(K)

2. λ ∈ σ(K) \ {0} ⇒ λ is eigenvalue of K with finite geometric multiplicity dim(ker(λI −K))

3. σ(K) is countable with 0 as the only limit point

Proof. 1. already proven
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2. Assume λ is no eigenvalue, i. e. ker(I − 1
λK) = {0}

Riesz 3. thm.
========⇒ ran (I − 1

λK) = X
bounded inv. thm.
===========⇒ (I − 1

λK)−1 is continuous  
dim(ker(λI −K)) = dim(ker(I − 1

λK)) <∞ already shown (Riesz 1. thm.)

3. • Let λn ∈ σ(K) mutually different with λn → λ 6= 0 and eigenvectors xn ∈ X.
Set Xn = span{x1, . . . , xn} and choose zn ∈ Xn with ‖zn‖ = 1, dist(zn, Xn−1) ≥ 1

2 .
Then Kzn contains no convergent subsequence (⇒  ):

Let zn =
∑n
i=1 αixi ⇒ Kzn − λnzn =

∑n−1
i=1 αi(λi − λn)xi ∈ Xn−1, thus

‖Kzn −Kzm‖ = ‖λnzn − (Kzm − (Kzn − λnzn))︸ ︷︷ ︸
∈Xn−1

‖ ≥ dist(λnzn, Xn−1) ≥ λn
2 ∀m < n.

• σ(K) ⊂ B‖K‖(0) ⊂ C & 0 is only limit point
⇒ σ(K) \B 1

n
(0) is finite ∀n ∈ N

⇒ all elements can be numbered

From now on let X,Y be Hilbert spaces so that X∗ ≡ X and Y ∗ ≡ Y . Then we can form KHK and
KKH . Just as for matrices the singular values are going to be σi =

√
λi for λi the eigenvalues of the

positive semi-definite symmetric operator KHK : X → X. The largest singular value is ‖K‖.

Definition 53 (Singular values & vectors). Let X,Y be Hilbert spaces, K : X → Y linear and compact.
The singular values of K are

σ1 ≥ σ2 ≥ σ3 ≥ . . . > 0,

where (σ2
n)n are the nonzero eigenvalues of KHK, counted with geometric multiplicity. The right singular

vectors of K are the corresponding normed eigenvectors un ∈ X, the left singular vectors are vn =
Kun/‖Kun‖ (for σn > 0).

Theorem 54 (Singular value decomposition). Let X,Y be Hilbert spaces, K : X → Y linear and
compact.

1. vn is eigenvector to eigenvalue σ2
n for KKH

2. σ(KHK) = σ(KKH), and the eigenspaces of σ2
n for KHK and KKH have the same dimension

3. Kun = σnvn and KHvn = σnun ∀n ∈ N

4. {un} and {vn} are complete orthonormal systems in ranKHK = ranKH = (kerK)⊥ and ranKKH =
ranK = (kerKH)⊥, respectively
(as long as eigenvectors of the same eigenvalue are chosen orthogonally).

Proof. 1. KKHvn = K(KHKun)/‖Kun‖ = σ2
nKun/‖Kun‖ = σnvn

2. By 1, for every eigenvector of KHK there exists one of KKH with same eigenvalue.
Analogously, for every eigenvector v of KKH one obtains an eigenvector KHv/‖KHv‖ of KHK
with same eigenvalue.
Furthermore, K and KH are injective on the eigenspaces of KHK and KKH , respectively.

3. ‖Kun‖2 = (Kun,Kun) = (un,K
HKun) = σ2

n(un, un) = σ2
n

⇒ vn = Kun/‖Kun‖ = Kun/σn & KHvn = KHKun/‖Kun‖ = σnun

4. un and vn are normed by definition.
Orthogonality for σn 6= σm follows from σ2

n(un, um) = (KHKun, um) = (un,K
HKum) = σ2

m(um, um)
(analogous for vn).
Let U = span{u1, u2, . . .}; need to show U⊥ = ∅.
KHK(U⊥) ⊂ U⊥: if (un,K

HKu) 6= 0 for some u ∈ U⊥, then 0 6= (KHKun, u) = σ2
n(un, u)  .

⇒ KH : KU⊥ → U⊥

⇒We can restrict K to a compact operator L : U⊥ → KU⊥ with adjoint LH = KH : KU⊥ → U⊥.
⇒ ∃u ∈ U⊥ with ‖u‖ = 1, ‖Lu‖ = ‖L‖
⇒ ‖L‖2 = ‖Lu‖2 = (Lu,Lu) = (u, LHLu) ≤ ‖LHLu‖ ≤ ‖L‖2 with equality only if LHLu = αu
⇒ u is eigenvector to eigenvalue α = ‖L‖2 of LHL and thus of KHK ⇒ L = 0 ⇒ U⊥ = kerK

13



Corollary 55 (SVD). Kx = K
∑∞
n=1(x, un)un =

∑∞
n=1(x, un)σnvn & KHy =

∑∞
n=1(y, vn)σnun.

Corollary 56 (Picard criterion). Let X,Y be Hilbert spaces, K : X → Y linear and compact, f ∈ ranK.

Ku = f has a solution iff
∑∞
n=1

(f,vn)2

σ2
n

<∞.

Proof. ‘⇒’ Let Ku = f , then (f, vn) = (Ku, vn) = (u,KHvn) = σn(u, un).

⇒
∑∞
n=1

(f,vn)2

σ2
n

=
∑∞
n=1(u, un)2 ≤ ‖u‖2

‘⇐’ Set u =
∑∞
n=1

(f,vn)
σn

un, then Ku =
∑∞
n=1(f, vn)vn = f and u ∈ X due to the condition.

Definition 57 (Mildly and severely ill-posed). The inverse problem Ku = f is called

• severely ill-posed if σn = o(n−α) for all α > 0,

• mildly ill-posed if σn = O(n−α) for some α > 0 and it is not severly ill-posed.

Example 58 (Integration/differentiation mildly ill-posed). K :L2((0, 1))→L2((0, 1)),Ku(x)=
∫ x

0
u(s) ds

⇒ KHv(y) =
∫ 1

y
v(s) ds ⇒ KHKu(y) =

∫ 1

y

∫ x
0
u(s) dsdx

Let σ2 be eigenvalue of KHK with eigenvector u, i. e. w ≡ KHKu = σ2u,

then w′′(s) = −u(s) = w(s)
σ2 with w′(0) = 0, w(1) = 0.

⇒ w(s) = α cos( sσ ) with w(1) = 0 ⇒ σ = 2
(2n−1)π , u(s) = α

σ2 cos( sσ ) ⇒ σn = O( 1
n )

The singular values help to better understand the effect of noise: Let K : X → Y compact, Ku = f ,
Kuδ = fδ noisy measurement of f . We have

‖uδ − u‖2X =

∞∑
n=1

(uδ − u, un)2 =

∞∑
n=1

(fδ − f, vn)2

σ2
n

.

⇒ Noise at higher “frequencies” 1
σn

(meaning noise components in span{vn}) is amplified more.

8 Generalized inverse lecture 7

Even if an inverse problem has a solution it might not be unique. Likewise, the measurement may contain
a component outside the range of the forward operator, which thus can actually be ignored. Both these
situations refer to the first two conditions of well-definedness, injectivity and surjectivity. We now define
how the solution of an inverse problem or its regularization should behave in these situations (on Hilbert
spaces).

Definition 59 (Orthogonal projection). Let X be a Hilbert space, M ⊂ X a closed subspace. The
orthogonal projection PM : X →M is defined by

(PMx, v) = (x, v) ∀v ∈M.

Theorem 60 (Orthogonal projection). The orthogonal projection is well-posed, linear, and continuous
with ‖PM‖ ≤ 1.

Proof. Homework.

Definition 61 (Least squares & minimum-norm solution). Let X,Y be Hilbert spaces, A : X → Y linear
and continuous, b ∈ Y .

1. x ∈ X is called least squares solution of Ax = b if ‖Ax− b‖Y ≤ ‖Az − b‖Y ∀z ∈ X.

2. A least squares solution x is called minimum norm solution of Ax = b if ‖x‖X ≤ ‖z‖X for all least
squares solutions z.

Theorem 62 (Least squares solution). The following are equivalent:

1. x is least squares solution
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2. AHAx = AHb (AH applied to Ax = b)

3. Ax = PranAb

Proof.1.⇒2. optimality condition: 0 = d
dt‖A(x+tz)−b‖2Y |t=0 = (Ax−b, Az) = (AHAx−AHb, z) ∀z ∈ X

2.⇒3. 2. ⇒ (Ax− b, Az) = 0 for all z ∈ X ⇒ (Ax− b, v) = 0 for all v ∈ ranA ⇒ Ax = PranAb

3.⇒1. ‖Az − b‖2 = ‖(Ax− b) +A(z − x)‖2 Ax−b∈(ranA)⊥ & A(z−x)∈ranA
= ‖(Ax− b)‖2 + ‖A(z − x)‖2

The last characterization shows that a least squares solution might not exist, e. g. if ranA is dense in Y .

Theorem 63 (Domain of minimum norm solution). Let b ∈ ranA⊕ (ranA)⊥.

1. A least squares solution exists.

2. The minimum norm solution is well-defined.

Proof. 1. Let b = Ax+ w with w ∈ (ranA)⊥ = kerAH ,
then x is a least squares solution due to AHAx = AH(Ax+ w) = AHb.

2. Homework (analogous to theorem 10)

Definition 64 (Moore–Penrose inverse). Let X,Y be Hilbert spaces, A : X → Y linear and bounded,
B : (kerA)⊥ → ranA with B = A|(kerA)⊥ . The Moore–Penrose (generalized) inverse is the unique linear
extension

A+ : ranA⊕ (ranA)⊥ → (kerA)⊥

of B−1 with kerA+ = (ranA)⊥.

Note that the minimum norm solution and the Moore–Penrose inverse are not defined on all of X, e. g.
if ranA is dense in Y , then (ranA)⊥ = ∅.

Theorem 65 (Moore–Penrose inverse). The Moore–Penrose inverse is uniquely determined by

1. AA+A = A

2. A+AA+ = A+

3. A+A = I − PkerA

4. AA+ = PranA|ranA⊕(ranA)⊥

Proof. ‘⇒’ (1) and (2) follow from (3) and (4), (3) and (4) follow from definition of A+

‘⇐’ – domain of A+ follows from (4)

– range of A+ follows from (2) & (3)

– kerA+ ⊃ (ranA)⊥ follows from (2) & (4)

– A+ = B−1 on (kerA)⊥ = ranA follows from (3) ⇒ kerA+ = (ranA)⊥

Theorem 66 (Minimum norm solution and Moore–Penrose inverse). Let b ∈ ranA ⊕ (ranA)⊥. The
minimum norm solution of Ax = b is x∗ = A+b, and the least squares solutions are x∗ + kerA.

Proof. Homework.

Remark 67 (Moore–Penrose inverse of compact operator). Let K : X → Y linear and compact with
SVD σn, un, vn and b ∈ ranK ⊕ (ranK)⊥, then

∞∑
n=1

σ2
n(K+b, un)un = KHKK+b = KHPranKb = KHb =

∞∑
n=1

σn(b, vn)un

⇒ K+b =

∞∑
n=1

(K+b, un)un =

∞∑
n=1

(b, vn)

σn
un.
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9 Linear regularization lecture 8

The Moore–Penrose inverse K+ solves the inverse problem Kx = y for y ∈ dom(K+) = ranK⊕(ranK)⊥

and thus addresses the existence and uniqueness problems of an ill-posed inverse problem. However, K+

is in general not continuous so that noise in y prevents the solution of Kx = y. This problem is solved
by regularization.

Definition 68 (Regularization). A family of continuous linear operators Rα : Y → X, α > 0, and a
map

α : (0,∞)× Y → (0,∞), (δ, yδ) 7→ α(δ, yδ)

for the choice of the regularization parameter α is called a regularization of K+ if for every sequence yδ

with ‖yδ − y‖ ≤ δ one has
Rα(δ,yδ)y

δ −−−→
δ→0

K+y.

The parameter choice is called a priori if α(δ, yδ) = α(δ), else a posteriori. It is conventionally chosen
such that α→ 0 as δ → 0.

For compact operators K on Hilbert spaces, one can obtain regularization operators Rα for K+ via the
SVD of K, by approximating

K+y =

∞∑
n=1

(y, vn)

σn
un with Rαy =

∞∑
n=1

gα(σn)(y, vn)un

for some gα : (0,∞)→ [0,∞). For Rα to be an admissible regularization of K+ one needs gα(t)→ 1
t for

α→ 0. In order to check the convergence, the error is estimated by

‖Rαyδ −K+y‖ ≤ ‖Rαyδ −Rαy‖︸ ︷︷ ︸
propagated measurement error

+ ‖Rαy −K+y‖︸ ︷︷ ︸
approximation error

.

Theorem 69 (Approximation error). Let X,Y Banach spaces, K : X → Y linear and compact with
SVD (σn, un, vn). Let gα : (0,∞)→ [0,∞) satisfy

1. sup{gα(t) | t ∈ (0,∞)} = Cα <∞ for all α > 0,

2. sup{σgα(σ) |σ > 0, α > 0} ≤ γ <∞,

3. gα(t)→ 1
t pointwise for α→ 0.

Then Rα : Y → X, Rαy =
∑∞
n=1 gα(σn)(y, vn)un is continuous with

‖Rα‖ ≤ Cα, Rαy −−−→
α→0

K+y for all y ∈ domK+.

Proof. • ‖Rαy‖2 =
∑∞
n=1 |gα(σn)|2|(y, vn)|2 ≤ C2

α

∑∞
n=1 |(y, vn)|2 ≤ C2

α‖y‖2

• ‖Rαy −K+y‖2 =
∑∞
n=1 |gα(σn)− 1

σn
|2|(y, vn)|2 =

∑∞
n=1 |σngα(σn)− 1|2| (y,vn)

σn
|2

• Picard criterion ⇒
∑∞
n=1 |

(y,vn)
σn
|2 <∞

• for ε > 0 choose N ∈ N with
∑∞
n=N+1
σn>0

| (y,vn)
σn
|2 < ε

2(1+γ)2

and α0 > 0 with
∑N
n=1 |σngα(σn)− 1|2| (y,vn)

σn
|2 < ε

2 ∀α < α0

• ‖Rαy −K+y‖2 =

N∑
n=1

|σngα(σn)− 1|2
∣∣∣∣ (y, vn)

σn

∣∣∣∣2︸ ︷︷ ︸
≤ ε2

+

∞∑
n=N+1
σn>0

|σngα(σn)− 1|2︸ ︷︷ ︸
≤(1+γ)2

∣∣∣∣ (y, vn)

σn

∣∣∣∣2
︸ ︷︷ ︸

≤ ε2

≤ ε
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Remark 70 (Convergence speed). The convergence Rαy → K+y can be arbitrarily slow. Indeed, given
an arbitrarily small α0 > 0 and arbitrarily large C > 0, one can find n large enough such that ‖Rαvn −
K+vn‖ = |gα(σn)− 1

σn
| > 1

σn
− supα≥α0

Cα > C for all α ≥ α0.

Corollary 71 (Convergence of regularization). Let K, gα as above and α(δ, yδ) →δ→0 0 such that
Cα(δ,yδ)δ →δ→0 0, then

Rα(δ,yδ)y
δ −−−→
δ→0

K+y.

Proof. ‖Rαyδ −K+y‖ ≤ ‖Rα‖‖yδ − y‖︸ ︷︷ ︸
≤Cαδ→0

+ ‖Rαy −K+y‖︸ ︷︷ ︸
→0

Example 72 (Different regularizations). 1. Truncated singular value decomposition, TSVD

gα(t) =

{
0, t ≤ α
1
t , t > α

⇒ Cα =
1

α
, γ = 1

2. Lavrentiev regularization

gα(t) =
1

t+ α
⇒ Cα =

1

α
, γ = 1

3. Tikhonov regularization

gα(t) =
t

t2 + α
⇒ Cα =

1

2
√
α
, γ = 1

To implement the TSVD it suffices to determine the first singular values and vectors; for the Lavrentiev
and Tikhonov regularization one can exploit the following.

Theorem 73 (Equivalent characterization of Lavrentiev and Tikhonov regularization).

1. Let Rα be the Tikhonov regularization operator, then Rαy = arg minx ‖Kx− y‖2 + α‖x‖2.

2. Let Rα be the Lavrentiev regularization operator and U : X → Y , Uun = vn ∀n (U |
ranKH is an

isometry; if K = KH : X → Y = X with ranK dense in X, then U = Id), then Rα = (K +αU)+.

Proof. Homework.

Under additional regularity conditions on y or K+y one can achieve convergence rates.

Definition 74 (Source condition). A source condition is a regularity condition on x = K+y of the form

x = (KHK)µw for some µ > 0 and w ∈ X.

Remark 75 (Regularity in source condition). The source condition depends on K, i. e. the regularity is
measured in terms of K. The higher µ the more regular are y and x.

Theorem 76 (Error bound under source condition). Under the source condition x = K+y = (KHK)µw
we have

‖Rαy −K+y‖ ≤ ϕµ(α)‖w‖ for ϕµ(α) = max
σ∈(0,‖K‖]

|gα(σ)σ2µ+1 − σ2µ|.

Proof. •
∑∞
n=1

(y,vn)
σn

un = K+y = x =
∑∞
n=1 σ

2µ
n (w, un)un ⇒ (w, un) = (y,vn)

σ2µ+1
n

• ‖Rαy −K+y‖2 =
∑∞
n=1

[
(gα(σn)− 1

σn
)σ2µ+1
n

]2
︸ ︷︷ ︸

≤ϕµ(α)2

[
(y,vn)

σ2µ+1
n

]2
︸ ︷︷ ︸
=(w,un)2

Remark 77 (Convergence rates under source condition). Under the source condition we thus have
‖Rαyδ − K+y‖ ≤ Cαδ + ϕµ(α)‖w‖. The right-hand side can now be minimized for α to obtain an
optimal convergence rate (and the associated choice of the regularization parameter α(δ)).
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Example 78 (Convergence rates under source condition). lecture 9

1. TSVD:

ϕµ(α) = sup
σ>0

∣∣∣∣∣σ2µ+1 ·

{
0, σ ≤ α
1
σ , σ > α

}
− σ2µ

∣∣∣∣∣ = sup
σ>0

σ2µ ·

{
1, σ ≤ α
0, σ > α

}
= α2µ, Cα =

1

α

Cαδ + ϕµ(α)‖w‖ → min! ⇒ α(δ) =

(
δ

2µ‖w‖

) 1
2µ+1

⇒ ‖Rα(δ)y
δ −K+y‖ ≤ C‖w‖

1
2µ+1 δ

2µ
2µ+1

2. Lavrentiev:

ϕµ(α) = sup
σ≤‖K‖

∣∣∣∣σ2µ+1 1

σ + α
− σ2µ

∣∣∣∣ = sup
σ≤‖K‖

σ2µα

σ + α
=

{
‖K‖2µα
‖K‖+α , µ ≥ 1

2
α2µ

2(1−µ)(1−2µ)2µ−1 , µ < 1
2

}
, Cα =

1

α

Cαδ + ϕµ(α)‖w‖ → min! ⇒ α(δ) = C

{√
δ, µ ≥ 1

2

δ1/(2µ+1), µ < 1
2

⇒ ‖Rα(δ)y
δ −K+y‖ ≤ C

{√
δ, µ > 1

2

δ2µ/(2µ+1), µ ≤ 1
2

3. Tikhonov: Homework

Remark 79 (Maximum convergence rate). The smaller µ, the worse the convergence rate. Independent
of the size of µ, the convergence rate is always strictly smaller than δ1 due to the ill-posedness.

Definition 80 (Qualification). The qualification of a regularization method is the largest θ = 2µ0 so
that the source condition for µ < µ0 yields a slower convergence rate.

Example 81 (Qualification). TSVD: ∞; Lavrentiev: 1; Tikhonov: 2

Remark 82 (Mozorow’s discrepancy principle). The discrepancy between the correct data y and the
result KRαy of the forward problem is

‖y−KRαy‖2 =

∞∑
n=1

(1− σngα(σn))2(y, vn)2 =

∞∑
n=1

(σ2µ+1
n − σ2µ+2

n gα(σn))2

(
(y, vn)

σ2µ+1
n

)2

≤ ϕµ+ 1
2
(α)2‖w‖2.

For the above examples, ϕµ+ 1
2
(α(δ)) = const.δ, thus ‖y −KRαy‖ ≤ const.δ. This motivates Mozorow’s

discrepancy principle: Pick α such that ‖KRαyδ − yδ‖ ∼ δ.

10 Tikhonov regularization for nonlinear inverse problems

For a nonlinear operator F : X → Y one cannot define a SVD or an adjoint. However, the formulation of
Tikhonov regularization as minimization problem can be transferred onto the nonlinear inverse problem
F (x) = y.

Definition 83 (Least squares and minimum norm solution, Tikhonov regularization). Let X,Y be
Banach spaces, F : X → Y , x∗ ∈ X.

• x ∈ X is called a least squares solution of F (x) = y if ‖F (x)− y‖ ≤ ‖F (z)− y‖ ∀z ∈ X.

• A least squares solution x of F (x) = y is called x∗-minimum norm solution if ‖x− x∗‖ ≤ ‖z− x∗‖
for all least squares solutions z.

• The associated Tikhonov regularization operator is Rα : Y 3 y 7→ arg minx∈X J
y
α(x) for Jyα(x) =

‖F (x)− y‖2 + α‖x− x∗‖2 ⊂ X.

Remark 84 (Consequences of nonlinearity).
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• Uniqueness of the x∗-minimum norm solution or the Tikhonov regularization cannot be expected
for nonlinear F . Also, there can be local and global minimizers – we will only consider global ones.

• For linear inverse problems we picked x∗ = 0, for nonlinear ones 0 plays no distinguished role.

We now work through the standard program for nonlinear regularized inverse problems:

1. existence of minimizers

2. stability of minimizers

3. convergence of the regularization

Theorem 85 (Existence). Let X,Y be reflexive Banach spaces (i. e. X∗∗ = X, Y ∗∗ = Y ) and F : X → Y
continuous and weakly sequentially continuous (i. e. F (xn) ⇀ F (x) for xn ⇀ x).

a. Jyα has a minimizer.

b. If F (x) = y has a solution x ∈ X, then it has an x∗-minimum norm solution.

Proof. (a): “direct method of the calculus of variation”

1. Jyα(x∗) = ‖F (x∗)− y‖2 <∞ & Jyα ≥ 0

2. consider a “minimizing sequence” xn with Jyα(xn)→ inf Jyα monotonically

3. α‖xn−x∗‖2 ≤ Jyα(xn) ≤ Jyα(x0) <∞ Banach–Alaoglu
==========⇒ there exists a convergent subsequence xn ⇀ x

4. Due to weak lower semi-continuity of the norm and F (xn) ⇀ F (x),
Jyα(x) = ‖F (x)− y‖2 + α‖x− x∗‖2 ≤ lim infn→∞ Jyα(xn)

(b): analogous, just restrict Jyα to the weakly closed set of solutions to F (x) = y

In the linear case, ‖Rαyδ − Rαy‖ < Cα‖xδ − y‖, i. e. the regularized solution converges strongly and
linearly in the measurement error. In the nonlinear case we only obtain weak convergence of subsequences:

Theorem 86 (Stability/continuity of regularization). In addition to the conditions for existence let
yn → y in Y and xn ∈ arg minx J

yn
α (x). Then xn has a weakly convergent subsequence, and every weak

limit point minimizes Jyα(x).

Proof. 1. α‖xn − x∗‖2 ≤ Jynα (xn) ≤ Jynα (x∗) = ‖F (x∗)− y‖2 < C <∞
Banach–Alaoglu
==========⇒ xn has weakly convergent subsequence xn ⇀ x

2. Due to weak lower semi-continuity of the norm and F (xn) ⇀ F (x),

Jyα(x) ≤ lim infn→∞ Jynα (xn) ≤ lim infn→∞ Jynα (z)
yn → y strongly

= Jyα(z) for all z ∈ X

lecture 10So far we showed existence and (weak subsequence-) continuity of the Tikhonov regularization (unique-
ness is impossible in general), i. e. as much well-posedness as possible. Now we consider convergence.

Theorem 87 (Convergence). In addition to the above let F (x) = y have a solution x ∈ X and let yδ ∈ Y
with ‖yδ − y‖ ≤ δ as well as xδα ∈ arg minJy

δ

α . If α→ 0 and δ/
√
α→ 0 as δ → 0 for α = α(δ, yδ), then

xδα has a weakly convergent subsequence, and every weak limit point is an x∗-minimum norm solution.

Remark 88 (Condition on regularization parameter). We require δ/
√
α→ 0, which is exactly the same

as for Tikhonov regularization in the linear case (Cαδ → 0).

Proof. 1. There exists an x∗-minimum norm solution x†.

2. xδα has weakly convergent subsequence:

α‖xδα − x∗‖2 ≤ Jy
δ

α (xδα) ≤ Jyδα (x†) = ‖F (x†)− yδ‖2 + α‖x† − x∗‖2
F (x†) = y

≤ δ2 + α‖x† − x∗‖2
⇒ xδα bounded ⇒ ∃ weakly convergent subsequence xδnαn ⇀ x

3. x is x∗-minimum norm solution:
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• ‖x− x∗‖2 ≤ lim infn→∞ ‖xδnαn − x
∗‖2

F (x†) = y

≤ lim infn→∞
δ2n
αn

+ ‖x† − x∗‖2 = ‖x† − x∗‖2

• ‖F (xδnαn)− y‖ ≤ δn + ‖F (xδnαn)− yδ‖ ≤ δn +

√
Jy

δn

αn (xδnαn) ≤ δn +

√
Jy

δn

αn (x†)

≤ δn +
√
δ2
n + αn‖x† − x∗‖2 −−−−→

n→∞
0 ⇒ y = limn→∞ F (xδnαn) = F (x)

Corollary 89 (Strong stability and convergence in Hilbert space). If X is a Hilbert space, the “weak”
may be replaced with “strong” in the previous result.

Remark 90 (Role of the Hilbert space). Strong convergence is indeed specific to Hilbert spaces and
cannot be expected in general Banach spaces: In Hilbert spaces, xn ⇀ x & ‖xn‖ → ‖x‖ imply xn → x,
and we will just copy the corresponding proof.

Proof. ‖xδnαn − x‖
2 = ‖xδnαn − x

∗‖2︸ ︷︷ ︸
≤ δ2n
αn

+‖x†−x∗‖2=
δ2n
αn

+‖x−x∗‖2

(x† & x are x∗-min. nrm. sols.)

−2 (xδnαn − x
∗, x− x∗)︸ ︷︷ ︸

→‖x−x∗‖2

+‖x− x∗‖2 → 0

Still to consider: Convergence rates under additional smoothness conditions. To this end we restrict to
Hilbert spaces in order to get rates in the norm (otherwise we would have to metrize the weak topology
– which we will do later for measures).

Definition 91 (Fréchet differentiability). A map F : X → Y between Banach spaces is called Fréchet
differentiable in x ∈ X with Fréchet derivative F ′(x), if F ′(x) : X → Y is linear and continuous with
‖F (y)−F (x)−F ′(x)(y−x)‖

‖x−y‖ → 0 as ‖y−x‖ → 0. F is called Fréchet differentiable, if it is everywhere Fréchet

differentiable.

Theorem 92 (Differentiability of Tikhonov energy). Let X,Y be Hilbert spaces. If F : X → Y is
Fréchet differentiable, then so is Jyα with (Jyα)′(x) = (2(F ′(x))H(F (x)− y) + 2α(x− x∗), ·).

Proof. Homework

For convergence rates we require a source condition. We consider the source condition for µ = 1
2 .

x† = (KHK)
1
2w for some w ∈ X is equivalent to x† = KHp with p =

∑∞
n=1(w, un)vn. This can

be interpreted as the existence of a Lagrange multiplicator for the minimum norm solution problem
minx

1
2‖x‖

2 such that Kx = y, since

Lagrangian L(x, p) =
1

2
‖x‖2 − (Kx− y, p)

opt. cond. 0 =
∂L

∂p
= y −Kx & 0 =

∂L

∂x
= x−KHp.

Analogously one proceeds for a nonlinear operator:

Lagrangian L(x, p) =
1

2
‖x− x∗‖2 − (F (x)− y, p)

opt. cond. 0 =
∂L

∂p
= y − F (x) & 0 =

∂L

∂x
= x− x∗ − (F ′(x))Hp.

Definition 93 (Source condition). The source condition with µ for an x∗-minimum norm solution x†

of the inverse problem F (x) = y reads

x† − x∗ = [F ′(x†)HF ′(x†)]µw for a w ∈ X.

Theorem 94 (Convergence rate under source condition). In addition to the above let x†−x∗ = F ′(x†)Hp
for some p ∈ Y and let F ′ have Lipschitz constant L with L‖p‖ ≤ 1. If we choose α(δ, yδ) ∼ δ, then
there exists D > 0 with ‖xδα − x†‖ ≤ const.

√
δ ∀δ < D.

Remark 95 (Relation to linear setting). In the linear setting, L = 0; also the choice of α and the
resulting error estimate are the same as in the linear setting for µ = 1

2 .
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Proof. • ‖F (xδα)− yδ‖2 + α‖xδα − x∗‖2 ≤ ‖F (x†)− yδ‖2 + α‖x† − x∗‖2 ≤ δ2 + α‖x† − x∗‖2
⇔ ‖F (xδα)− yδ‖2 + α‖xδα − x†‖2 ≤ δ2 + 2α(x† − x∗, x† − xδα) = δ2 + 2α(p, F ′(x†)(x† − xδα))

• set f(t) = F (x† + t(xδα − x†))
⇒ f ′(t) = F ′(x† + t(xδα − x†))(xδα − x†) has Lipschitz constant L‖xδα − x†‖2

⇒ ‖F (xδα)−F (x†)−F ′(x†)(xδα−x†)‖ = ‖f(1)−f(0)−f ′(0)‖ = ‖
∫ 1

0
f ′(t)−f ′(0) dt‖ ≤ L

2 ‖x
δ
α−x†‖2

⇒ ‖F (xδα)− yδ‖2 +α‖xδα−x†‖2 ≤ δ2 + 2α(p, F (x†)−F (xδα)) +αL‖p‖‖xδα−x†‖2 ≤ δ2 + 2α(p, yδ−
F (xδα)) + 2α(p, y − yδ) + αL‖p‖‖xδα − x†‖2

⇔ 1
α‖F (xδα)− yδ + αp‖2 + (1− L‖p‖)‖xδα − x†‖2 ≤ δ2

α + α‖p‖2 + 2δ‖p‖ = ( δ√
α

+
√
α‖p‖︸ ︷︷ ︸

=̂Cαδ+ϕ 1
2

(α)‖w‖

)2

=======⇒
c1δ≤α≤c2δ

(1− L‖p‖)‖xδα − x†‖2 ≤ δ( 1√
c1

+
√
c2‖p‖)2

⇒ ‖xδα − x†‖2 ≤ δ( 1√
c1

+
√
c2‖p‖)2/(1− L‖p‖)

11 Short introduction to convex analysis lecture 11

One often tries to choose convex regularizations since these are easier to minimize and come with simple
error estimates.

Definition 96 (Convex functional). A subset C of a Banach space X is called convex if

θx+ (1− θ)y ∈ C ∀x, y ∈ C, θ ∈ (0, 1).

A functional f : X → (−∞,∞] is called proper and convex if f 6≡ ∞ and

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) ∀x, y ∈ X, θ ∈ (0, 1).

The domain of f is
dom f = {x ∈ X | f(x) <∞}.

Example 97 (Convex functions).

• linear functionals

• x 7→ (x,Ax) for coercive linear operator A

• indicator function ιC(x) =

{
0 if x ∈ C
∞ else

of a convex set C

• norms

• compositions of convex functionals with linear operators

Convergence rates for regularizations of inverse problems can typically be obtained in the so-called
Bregman distance, which we introduce next.

Definition 98 (Subdifferential). The subdifferential of a convex functional f : X → (−∞,∞] in x ∈ X
is

∂f(x) = {s ∈ X∗ | f(y) ≥ f(x) + 〈s, y − x〉}, (“f lies above its linearization”)

its elements are called subgradients.

Example 99 (Subdifferentials).

• ` ∈ X∗ ⇒ ∂`(x) = {`}

• f Fréchet-differentiable in x ⇒ ∂f(x) = {f ′(x)}

• ‖ · ‖ Hilbert space norm ⇒ ∂‖ · ‖(x) =

{
{( x
‖x‖ , ·)} if x 6= 0

{(y, ·) | ‖y‖ ≤ 1} else
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Definition 100 (Bregman distance). Let f be a proper convex functional on a Banach space X and
w ∈ ∂f(x). The Bregman distance of y ∈ X to x ∈ X is

Df
w(y, x) = f(y)− f(x)− 〈w, y − x〉 ≥ 0

(and it does not satisfy the axioms of a metric).

The (Bregman) distance to a minimizer of a convex functional as well as reconstruction errors in linear
inverse problems and their convex regularizations can be estimated via duality methods.

Definition 101 (Legendre–Fenchel transform). The Legendre–Fenchel conjugate of a convex functional
f on a Banach space X is

f∗ : X∗ → (−∞,∞], f∗(y) = sup
x∈X
〈y, x〉 − f(x).

The (predual) Legendre–Fenchel conjugate of a convex functional f on a dual space X∗ is

∗f : X → (−∞,∞], ∗f(x) = sup
y∈X∗

〈y, x〉 − f(y).

Example 102 (Legendre–Fenchel conjugate).

• (‖ · ‖X)∗ = ι{y∈X∗ | ‖y‖X∗≤1}

• f(x) = 1
2 (x,Ax) for coercive A ⇒ f∗(y) = 1

2 (y,A−1y)

Theorem 103 (Fenchel–Moreau theorem).

• The Legendre–Fenchel conjugate is convex and lower semi-continuous.

• The Legendre–Fenchel biconjugate
∗
[f∗] is the convex lower semi-continuous envelope of f (i. e. the

largest lower semi-continuous convex function below f).

Theorem 104 (Fenchel inequality). Let f be proper convex, x ∈ X, y ∈ X∗.

• 〈y, x〉 ≤ f(x) + f∗(y)

• equality ⇔ y ∈ ∂f(x) ⇔ x ∈ ∂f∗(y)

Every convex optimization problem, when written as a sum of two terms, has an associated convex
dual optimization problem. The relation between primal and dual problem allows to estimate the above-
mentioned errors.

Theorem 105 (Fenchel–Rockafellar). Let X,Y be Banach spaces, F : Y → (−∞,∞], G : X → (−∞,∞]
proper and convex and A : X → Y bounded linear.

1. The primal optimization problem

p∗ = inf
x∈X

F (Ax) +G(x)

and its dual problem
d∗ = sup

y∈Y ∗
−F ∗(y)−G∗(−A∗y∗)

satisfy weak duality, i. e. d∗ ≤ p∗.

2. Let relintS denote the relative interior of a set S (the interior relative to x+ span{S − x}). If

(a) relint domF ∩A relint domG 6= ∅ or

(b) (−A∗) relint domF ∗ ∩ relint domG∗ 6= ∅ and F,G are lower semi-continuous,

then strong duality p∗ = d∗ holds. Under (2a) the supremum, under (2b) the infimum is attained.
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Proof of (1). p∗ = inf
x∈X

F (Ax) +G(x)

≥ inf
x∈X

∗
[F ∗](Ax) +G(x)

= inf
x∈X

sup
y∈Y ∗

〈y,Ax〉 − F ∗(y) +G(x)

≥ sup
y∈Y ∗

inf
x∈X
〈y,Ax〉 − F ∗(y) +G(x)

= sup
y∈Y ∗

inf
x∈X
〈A∗y, x〉 − F ∗(y) +G(x)

= sup
y∈Y ∗

−F ∗(y)−G∗(−A∗y) = d∗

If x ∈ X, then with the help of the dual problem one can estimate how well x minimizes F (Ax) +G(x).
Indeed, for any y ∈ Y ∗ we have

[F (Ax) +G(x)]− p∗ ≤ [F (Ax) +G(x)]− [−F ∗(y)−G∗(−A∗y)] =: ε.

Then y is called a dual certificate for F (Ax) +G(x)− p∗ ≤ ε.

Corollary 106 (Primal-dual optimality conditions). Let strong duality hold.

x ∈ X solves the primal and y ∈ Y ∗ the dual problem ⇔

{
Ax ∈ ∂F ∗(y)

−A∗y ∈ ∂G(x)

}

Proof. • (x, y) primal-dual optimal ⇔ all inequalities must be equalities, i. e.

F (Ax) +G(x) = 〈y,Ax〉 − F ∗(y) +G(x) = 〈A∗y, x〉 − F ∗(y) +G(x) = −F ∗(y)−G∗(−A∗y)

• by Fenchel’s inequality, first equality ⇔ Ax ∈ ∂F ∗(y), last equality ⇔ −A∗y ∈ ∂G(x)

12 Tikhonov regularization in Banach spaces lecture 12

So far we considered inverse problems and their regularizations on Hilbert spaces or at least reflexive
Banach spaces. However, non-reflexive Banach spaces also important, standard, and more natural in
many modern inverse problems (exemplarily, in the next chapters we will analyse inverse problems on
the space of Radon measures).
A typical generalization of Tikhonov regularization for an inverse problem Kx = y with an operator
K : X → Y between Banach spaces would be

arg min
x∈X

‖Kx− y‖Y︸ ︷︷ ︸
data/fidelity term

(ensures consistency
with measurement y)

+α ‖x‖X︸ ︷︷ ︸
regularization term

.

Also more general data and regularization terms are often more appropriate, e. g.

• ‖Kx− y‖2Y (typically if Y is a Hilbert space),

• Kullback–Leibler divergence
∫
dKL(Kx(s), y(s)) ds with dKL(a, b) = b log b

a − b+ a,

• entropy
∫
e(x(s)) ds with e(x) = x(log x− 1).

We consider the general setting

arg min
x∈X

Jyα(x), Jyα(x) = 1
αFy(Kx) +G(x)

with Fy, G proper convex, Fy(y) = 0, Fy > 0 else. For α = 0 we interpret this as constraint Fy(Kx) = 0.
We let y† be the noise-free measurement and x† the correct solution to the inverse problem Kx† = y†.
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Theorem 107 (Vanishing Bregman distance for noiseless reconstruction). Let x† ∈ X satisfy the source

condition −K∗w† ∈ ∂G(x†) for some w† ∈ Y ∗. Then any minimizer x of Jy
†

0 satisfies

DG
−K∗w†(x, x

†) = 0.

Proof. DG
−K∗w†(x, x

†) = G(x)−G(x†)− 〈−K∗w†, x− x†〉
= G(x)−G(x†) + 〈w†,Kx−Kx†〉 = G(x)−G(x†) = Jy

†

0 (x)− Jy
†

0 (x†) ≤ 0

Remark 108 (Interpretation of source condition).

1. Same source condition as in the setting with Hilbert space & nonlinear operator.

2. Source condition −K∗w† ∈ ∂G(x†) is one of the two necessary and sufficient primal-dual optimality

conditions for minimizing Jy
†

0 .

3. The other one is Kx† ∈ ∂( 1
0Fy†)

∗(w†) = ∂ι∗{y†}(w
†) = {y†}, thus automatically satisfied.

4. Thus, if strong duality holds, source condition ⇒ x† minimizes Jy
†

0 & w† certifies this.

Now let yδ be a noisy measurement with Fyδ(y
†) ≤ δ (this is how we now quantify the noise strength).

• If xδ is an approximation of x† and Jy
†

0 smooth, the reconstruction error xδ − x† can be estimated

from the difference Jy
†

0 (xδ)− Jy
†

0 (x†) and lower bounds on the Hessian of Jy
†

0 .

• For nonsmooth convex Jy
†

0 the Hessian-based estimates are replaced by Bregman distances for Jy
†

0 .

• Since Jy
†

0 (xδ)− Jy
†

0 (x†) =∞ if Kxδ 6= yδ, plain Bregman distance would be ∞.

• Thus, fidelity term first needs to be dualized: for some fixed w† ∈ Y ∗, instead of Jy
†

0 consider

G(·) + 〈K∗w†, ·〉 − ( 1
0Fy†)

∗(w†)

(which by weak duality is never larger than Jy
†

0 ).

Theorem 109 (Bregman distance estimate for noisy reconstruction). Let x† ∈ X satisfy the source

condition −K∗w† ∈ ∂G(x†) for some w† ∈ Y ∗. Then a minimizer xδα of Jy
δ

α satisfies

DG
−K∗w†(x

δ
α, x
†) ≤

(
3δ + F ∗yδ(2αw

†) + F ∗yδ(−2αw†)
)
/(2α),

Fyδ(Kx
δ
α) ≤

(
3δ + F ∗yδ(2αw

†) + F ∗yδ(−2αw†)
)
,

〈K∗w, xδα − x†〉 ≤
(

4δ + F ∗yδ(2αw
†) + F ∗yδ(−2αw†) + F ∗yδ(2αw) + F ∗yδ(−2αw)

)
/(2α) for all w ∈ Y ∗.

Proof. 1.
[
G(xδα) + 〈K∗w†, xδα〉 − ( 1

0Fy†)
∗(w†)

]
−
[
G(x†) + 〈K∗w†, x†〉 − ( 1

0Fy†)
∗(w†)

]
= G(xδα)−G(x†)− 〈−K∗w†, xδα − x†〉 = DG

−K∗w†(x
δ
α, x
†)

2. optimality of xδα:

G(xδα) + 1
αFyδ(Kx

δ
α) = Jy

δ

α (xδα) ≤ Jy
δ

α (x†) = G(x†) + 1
αFyδ(y

†) ≤ G(x†) + δ
α .

3. Fenchel’s inequality:

〈K∗w, xδα−x†〉 =
〈2αw,Kxδα〉+ 〈−2αw,Kx†〉

2α
≤
Fyδ(Kx

δ
α) + F ∗yδ(2αw) + Fyδ(Kx

†) + F ∗yδ(−2αw)

2α

(already proves third statement in case second holds)
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4. using both inequalities,

DG
−K∗w†(x

δ
α, x
†) =

[
G(xδα) + 〈K∗w†, xδα〉 − ( 1

0Fy†)
∗(w†)

]
−
[
G(x†) + 〈K∗w†, x†〉 − ( 1

0Fy†)
∗(w†)

]
≤ δ

α
− 1

α
Fyδ(Kx

δ
α)+〈w†,K(xδα−x†)〉 ≤

1

2α

(
3δ + F ∗yδ(2αw

†) + F ∗yδ(−2αw†)
)
− 1

2α
Fyδ(Kx

δ
α).

Remark 110 (Rates from estimates). Fyδ(z) > 0 unless z = yδ

⇒ Fyδ “strictly convex” in yδ

⇒ F ∗yδ(±2αw) is differentiable in α = 0 (homework)

⇒ (F ∗yδ(2αw) + F ∗yδ(−2αw))/α→ 0 as α→ 0 (symmetric finite difference)

⇒ choosing α as minimizer of (δ + F ∗yδ(2αw
†) + F ∗yδ(−2αw†))/α we get a convergence rate,

e. g. Fyδ(z) = 1
2‖z − y

δ‖2 in Hilbert space ⇒ F ∗yδ(±2αw†) = 2α2‖w†‖2 ± 〈yδ, 2αw†〉
⇒ (δ + F ∗yδ(2αw

†) + F ∗yδ(−2αw†))/α = δ
α + 4‖w†‖2α ⇒ α =

√
δ

2‖w†‖ , and rate ∼
√
δ

Remark 111 (Relation to Hilbert space setting). For X,Y Hilbert spaces and G(x) = ‖x‖2, Fy(Kx) =
‖Kx−y‖2, the above recovers the convergence rate of linear Tikhonov regularization with source condition
for µ = 1

2 (and its proof reduces to the one we did for a nonlinear operator):

• DG
−KHw†(x

δ
α, x
†) = ‖xδα − x†‖2 (homework)

• F ∗yδ(2αw
†) + F ∗yδ(−2αw†) = 2‖w†‖2α2 (homework)

• Fyδ(y
†) = ‖yδ − y†‖2, so δ here was called δ2 before

Remark 112 (Primal versus predual). Without any further changes one may also replace X∗, Y ∗ with
predual spaces ∗X, ∗Y (s. t. (∗Z)∗ = Z), Legendre–Fenchel conjugates with predual conjugates, and ad-
joints K∗ with preadjoints ∗K (s. t. (∗K)∗ = K). This is the actual case of interest in the following.

13 Short introduction to Radon measures lecture 13

For superresolution microscopy or particle reconstruction applications, the natural space for inverse
problems is the space of Radon measures. They also naturally occur (as derivatives) in inverse problems,
whose reconstructions are piecewise constant/smooth, but we will only consider the former setting.

Definition 113 (Measure). 1. A set P of subsets of a set Ω is called σ-algebra if
(1) Ω ∈ P (2) A ∈ P ⇒ Ω \A ∈ P (3) Ai ∈ P ⇒

⋃∞
i=1Ai ∈ P

(due to A ∩B = Ω \ ((Ω \A) ∪ (Ω \B)) it is also closed under countable intersections)

2. The elements of P are called measurable sets, (Ω, P ) is a measurable space.

3. The Borel-algebra of a topological space Ω is the smallest σ-algebra containing all open sets.

4. A (positive/unsigned) measure is a map µ : P → [0,∞] with
(1) µ(∅) = 0 (2) µ(

⋃∞
n=1Ai) =

∑n
i=1 µ(Ai) for pairwise disjoint Ai (“countable additivity”)

5. A signed measure is a map ν : P → (−∞,∞] with (1) and (2) absolutely convergent.

6. The support of a measure µ on a Borel-measurable space is sptµ =
⋂
{A ∈ P |µ(Ω \A) = 0}.

Example 114 (Borel measures). 1. Dirac measure δx(A) =

{
1 if x ∈ A
0 else

, spt δx = {x}

2. counting measure #(A) =

{
number of elements of A if A finite,

∞ else
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3. Lebesgue measure L([a1, b1]× . . .× [an, bn]) = (b1 − a1) · · · (bn − an)

4. Hausdorff measure Hm(A) = limε→0 inf
{∑∞

i=1 ωm
(

diamBi
2

)m ∣∣∣A ⊂ ⋃∞i=1Bi, diamBi < ε
}

,

where ωm =volume of m-dimensional unit ball

H1(A) =length of A

5. Weighted measure ν = fµ for µ a measure, f measurable; ν(A) =
∫
A
f dµ

Remark 115 (Point masses). In some inverse problems one needs to reconstruct point sources, e. g.
radioactive point sources in emission tomography, single fluorescent molecules in microscopy or iron parti-
cles in magnetic resonance tomography. A point source at position x ∈ Rn with (radioactive/fluorescent/magnetic)
intensity a > 0 can be described by aδx. This motivates the use of a Banach space of Borel measures.

Definition 116 (Transformations of measures). Let (Ω, P ) & (Ω̃, P̃ ) be measurable spaces, µ a (signed)
measure on (Ω, P ) and B ∈ P .

1. The restriction of µ to B is µxB : P → (−∞,∞], µxB(A) = µ(A ∩B).

2. T : Ω→ Ω̃ is called measurable if T−1(Ã) ∈ P ∀Ã ∈ P̃ .

3. The pushforward of µ under T is T#µ : P̃ → (−∞,∞], T#µ(Ã) = µ(T−1(Ã)).

Remark 117 (Lebesgue integral). For measurable functions f : Ω → R the Lebesgue integral
∫

Ω
f dµ

can be defined.

Example 118 (Pushforwards). 1. µ T#µ
T

2. proji : Rn → R, x 7→ xi; proji#µ(A) = µ(Ri−1 ×A× Rn−i)
proji : Ω1 × . . .× Ωn → Ωi, (x1, . . . , xn) 7→ xi; proji#µ(A) = µ(Ω1 × . . .×A× . . .× Ωn)

3.
∫
A
f ◦ T dµ =

∫
T (A)

f dT#µ

Definition 119 (Properties of measures). 1. A measure µ on Ω is called σ-finite if Ω =
⋃∞
i=1Ai for

a sequence Ai ⊂ Ω with |µ(Ai)| <∞.

2. ν : P → (−∞,∞] is absolutely continuous wrt. µ : P → [0,∞], ν � µ, if µ(A) = 0 ⇒ ν(A) = 0.

3. ν & µ are called singular, ν ⊥ µ, if ∃A ∈ P : µ(A) = 0, ν(Ω \A) = 0.

Example 120 (Properties of measures). • L on Rn is σ-finite, but not finite.

• δx ⊥ L

• �

Theorem 121 (Hahn decomposition). For a signed measure µ : P → (−∞,∞] on (Ω, P ) there exists

N ∈ P such that

{
µ(A) ≤ 0 if A ⊂ N
µ(A) ≥ 0 if A ⊂ Ω \N

for all A ∈ P . We write µ+ = µx(Ω \N), µ− = µxN for

the positive and negative part of µ.

Theorem 122 (Radon–Nikodym). If µ is a σ-finite and ν a signed measure on (Ω, P ) with ν � µ, then
there exists a density function, called Radon–Nikodym derivative, i. e. a measurable f : Ω → R with
ν(A) =

∫
A
f dµ ∀A ∈ P . We write f = dν

dµ .

Theorem 123 (Lebesgue decomposition). If µ is a σ-finite and ν a signed measure on (Ω, P ), then
there exists a unique decomposition ν = τ + π with τ � µ, π ⊥ µ.
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Certain measures form a Banach space; those are of particular interest to inverse problems.

Definition 124 (Variation and regularity). 1. Let µ be a signed measure on Ω with Hahn decompo-
sition µ±. |µ| = µ+ − µ− is called (total) variation (measure) of µ.

2. |µ|(Ω) = sup{
∑∞
i=1 |µ(Ai)| |Ai ⊂ Ω measurable & pairwise disjoint} is called total variation of µ.

3. A measure µ on a topological space Ω is called regular if for all measurable A ⊂ Ω we have

µ(A) = sup{µ(K) |K ⊂ A measurable & compact} = inf{µ(U) |U ⊃ A measurable & open}.

A signed measure is regular if its variation measure is.

Theorem 125 (Regularity of Borel measures). A finite Borel measure on a compact metric space is
regular.

Theorem 126 (Riesz representation theorem). Let Ω be a compact metric space (e. g. [0, 1]n).

• The space of Radon measures M(Ω) = {µ regular signed Borel measure on Ω | |µ|(Ω) <∞} forms
a Banach space with the norm ‖µ‖M = TV(µ) = |µ|(Ω).

• M(Ω) = (C(Ω))∗, 〈f, µ〉 =
∫

Ω
f dµ

Example 127 (Radon measures as dual objects). Homework:

• µ = aδx ⇒ 〈f, µ〉 = af(x)

• µ = gL ⇒ 〈f, µ〉 =
∫

Ω
fg dL

• xn → x ∈ Ω, an → a ∈ R ⇒ anδxn
∗
⇀ aδx

• fn ⇀ f in L1(Ω) ⇒ fnL
∗
⇀ fL

• ‖
∑
i aiδxi‖M =

∑
i |ai| (xi pairwise different)

• ‖gL‖M = ‖g‖L1

Regularization using the total variation typically leads to sparse results, i. e. measures that are zero
almost everywhere, which fits to particle reconstruction.

lecture 14As we have discussed for the Tikhonov regularization, in non-Hilbert spaces one cannot expect con-
vergence rates for the norm of the reconstruction error in regularized inverse problems, but only gets
weak(-*) convergence of the error to zero. Thus, if we want rates, we need to metrize weak-* conver-
gence. The classical way to do so for measures is via optimal transport: One interprets two probability
measures µ1, µ2 as initial and desired distribution of a material and calculates the cost for transporting
the material from µ1 to µ2.

Definition 128 (Nonnegative measures). Let Ω ⊂ Rn compact.

• Nonnegative measures M+(Ω) = {µ ∈M(Ω) |µ = |µ|}

• Probability measures P(Ω) = {µ ∈M+(Ω) |µ(Ω) = 1}

Definition 129 (Monge formulation of optimal transport, Monge 1783). Let Ω ⊂ Rn compact, µ1, µ2 ∈
P(Ω) (representing the initial and final mass distribution), c : Ω × Ω → R (c(x, y) is the cost for
transporting unit mass from x to y). The Monge formulation of optimal transport reads

find the transport map T : Ω→ Ω minimizing C(T ) =

∫
Ω

c(x, T (x)) dµ1 among those with T#µ1 = µ2.

Monge’s formulation is not well-posed, e. g. for µ1 = δ0 and µ2 = 1
2δx+ 1

2δy half of the mass from 0 needs
to be transported to x and half to y. Also, the minimization problem is very nonlinear and difficult
to solve. In the 1950s Kantorovich found an alternative well-posed formulation as convex minimization
problem, which won him the economics Nobel prize.
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Definition 130 (Optimal transport cost, Kantorovich formulation). Let Ω ⊂ Rn compact, µ1, µ2 ∈
P(Ω), c : Ω× Ω→ R continuous.

• A transport plan between µ1, µ2 is a π ∈ P(Ω× Ω) with proj1#π = µ1, proj2#π = µ2. The set of
transport plans is Π(µ1, µ2). (π(A×B) is how much mass is transported from A to B.)

• The tranport cost of a transport plan π is C(π) =
∫

Ω×Ω
c(x, y) dπ(x, y).

• The Kantorovich formulation of optimal transport reads

find the transport plan π ∈ Π(µ1, µ2) minimizing C(π).

Theorem 131 (Existence of optimal transport map). There exists an optimal transport plan.

Proof. Homework (direct method of calculus of variations)

Definition 132 (Wasserstein distance). Let Ω ⊂ Rn compact, µ1, µ2 ∈ P(Ω), c(x, y) = |y − x|p, p ≥ 1.
The Wasserstein-p distance between µ1 and µ2 is

Wp(µ1, µ2) =

(
inf

{∫
Ω×Ω

|x− y|p dπ(x, y)

∣∣∣∣π ∈ Π(µ1, µ2)

}) 1
p

.

Theorem 133 (Wasserstein distance). The Wasserstein distance is a metric on P(Ω).

Proof. Homework

Remark 134 (Wasserstein distance for non-probability measures). By rescaling µ1, µ2, π with the same
factor, the Wasserstein distance is also defined for measures with non-unit mass.

Example 135 (Wasserstein distances).

• Wp(δx, δy) = |x− y| (homework)

• Wp(δx, µ) =
(∫

Ω
|x− y|p dµ(y)

) 1
p (homework)

• Let f, g : [0, 1] → [0,∞) with
∫ 1

0
f dL =

∫ 1

0
g dL = 1, let F,G be antiderivatives of f, g with

F (0) = G(0) = 0, set T = G−1◦F . Then Wp(fL, gL) =
(∫ 1

0
|x− T (x)|pf(x) dL(x)

) 1
p

(homework).

• Let A,B,C,D denote the corners of the unit square, µ1 = 1
2 (δA + δB), µ2 = 1

2 (δC + δD).

Wp(µ1, µ2) = 1, Wp(δA, µ2) = ( 1
2 + 2

p
2−1)

1
p (homework).

Theorem 136 (Metrization of weak-* convergence). The Wasserstein-p distance metrizes weak-* con-
vergence on P(Ω).

Example 137 (Metrization of weak-* convergence).

•
∑N
i=1 a

n
i δxni

∗
⇀
∑N
i=1 aiδxi ⇔ Wp(

∑N
i=1 a

n
i δxni ,

∑N
i=1 aiδxi)→ 0 (homework)

(also doable for linear combinations of Diracs)

• µn
∗
⇀ δx ⇔ Wp(µn, δx)→ 0 (homework)

In some inverse problems one has to reconstruct a nonnegative Radon measure µ. The total variation or
mass µ(Ω) is usually not known beforehand. Thus it is not sufficient to restrict to probability measures.
To define distances between measures of different mass one uses so-called unbalanced optimal transport.
There are many variants, we just introduce the one most natural in our later setting.

Definition 138 (Unbalanced Wasserstein divergence). Let µ1, µ2 ∈ M+(Ω). For fixed R > 0 the
unbalanced Wasserstein-p divergence between µ1 and µ2 is

W p
p,R(µ1, µ2) = inf

{
W p
p (µ, µ2) + 1

2R
p‖µ1 − µ‖M

∣∣µ ∈M+(Ω)
}
.
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Remark 139 (Unbalanced Wasserstein divergence). It measures the cost for first changing the mass
of µ1 to some intermediate measure µ and then transporting that new mass distribution to µ2. Up to
distance R a mass transport is less costly than removing the mass in the initial position and regrowing it
in the destination.

Remark 140 (Metric properties).

• W p
p,R(µ1, µ2) ≥ 0 with equality iff µ1 = µ2.

• W p
p,R(µ1, µ2) = W p

p,R(µ2, µ1):

– Have µ� µ1 + µ2 and µ ≤ µ1 + µ2.

– Set µ̃ = µ2 + µ1 − µ ∈M+(Ω).

– W p
p (µ, µ2) = W p

p (µ1, µ̃) and ‖µ1 − µ‖M = ‖µ2 − µ̃‖M.

• Triangle inequality is violated unless p = 1.

Remark 141 (Unbalanced Wasserstein divergence for signed measures). We can extend the unbalanced
Wasserstein-p divergence to signed measures µ1, µ2 ∈M(Ω) via

W p
p,R(µ1, µ2) = inf

{
W p
p (µ, µ+

2 ) +W p
p (ν, |µ−2 |) + 1

2R
p‖µ1 − µ+ ν‖M

∣∣µ, ν ∈M+(Ω), µ, ν � |µ1|+ |µ2|
}
.

14 Superresolution: Exact recovery lecture 15

Superresolution = image reconstruction at a spatial resolution higher than the one of the measurement!
2014 chemistry Nobel prize: Betzig, Moerner, Hell for super-resolved fluorescence microscopy

⇒ resolution better than diffraction limit of light!
Examples: In PALM or STORM, most fluorescent molecules are switched off (e. g. by reversible pho-
tobleaching) so that at each time point only a few molecules emit light. In the camera, each molecule
then appears as a diffuse blob, whose centre can be taken as the exact molecule position. Thus we try
to reconstruct a linear combination of Dirac measures!
First rigorous analysis by de Castro & Gamboa 2012 and by Candès & Fernandez-Granda in 2013 &
2014; we do slightly different version.
Underlying theme: Infinite precision despite finite (!) measurements.

Remark 142 (Forward operator in superresolution).

• As forward operator Candès & Fernandez-Granda used a truncated Fourier series

K :M(Ω)→ C(2k+1)n , Kµ =

(∫
Ω

e−2πiξ·x dµ(x)

)
ξ∈{−k,−k+1,...,k}n

on the domain Ω = [0, 1]n with periodic boundary (k = maximum frequency).

• Other (finite-dimensional) forward operators are possible in principle, though they might potentially
only allow slightly weaker results (e. g. because the source conditions have not as nice properties).

• We develop the theory independent of K and will a posteriori validate that it can be directly applied
for K the truncated Fourier series.

From now on we assume Ω to be a compact domain, K : M(Ω) → Y a linear forward operator with
finite-dimensional Euclidean codomain Y , and the ground truth configuration to be

µ† =

N∑
i=1

aiδxi ∈M(Ω).

Further, y† = Kµ†. We aim to reconstruct µ† from a (noisy or noiseless) measurement y by minimizing
the Tikhonov functional

Jyα(µ) =
1

α
‖Kµ− y‖2Y + ‖µ‖M.

29



Theorem 143 (Source condition). The source condition for µ† in this setting reads

∃w† ∈ ∗Y = Y s. t. ‖ ∗Kw†‖C0 ≤ 1, − ∗Kw†(xi) = sgn(ai), i = 1, . . . , N.

Proof. Homework.

Theorem 144 (Support identification). Let µ† satisfy a source condition with dual variable w† and let

| ∗Kw†| < 1 on Ω \ {x1, . . . , xN}. Then any minimizer µ of Jy
†

0 satisfies

sptµ ⊂ sptµ† = {x1, . . . , xN}.

Proof. Homework (use Bregman distance estimate).

Theorem 145 (Exact recovery). Assume in addition that for any ν ∈ M(Ω) with spt ν ⊂ sptµ† a

source condition holds. Then µ† is the unique minimizer of Jy
†

0 .

Proof. Let µ be another minimizer, then sptµ = sptµ†.
Let µ− µ† =

∑N
i=1 biδxi and w be the dual variable of the associated source condition, then

0 = −(w,K(µ− µ†)) = 〈− ∗Kw,µ− µ†〉 =

N∑
i=1

sgn(bi)bi > 0

unless b1 = . . . = bN = 0.

Remark 146 (Relaxation of conditions). Actually, asking a source condition with dual variable wν to
hold for every ν is more than required. In fact one solely needs that − ∗Kwν has the same sign as ν at
every xi.

Remark 147 (Existence of dual variables). Often, the conditions (of source conditions holding for any
measure ν with spt ν = {x1, . . . , xN}) are satisfied as long as the xi have a minimum distance from each
other (e. g. distance ≥ const./k if K is the truncated Fourier transform).

15 Superresolution: Reconstruction from noisy data

Now let yδ ∈ Y be a noisy measurement with ‖yδ − y†‖2Y ≤ δ. We will derive unbalanced Wasserstein
divergence estimates for the reconstruction error.

• Let ∆ > 0 be the minimum distance between the xi.

• For R > 0 let BR(S) denote the open R-neighbourhood of the set S.

• Abbreviate Bi = BR({xi}), B =
⋃N
i=1Bi, B

c = Ω \B.

Theorem 148 (Unbalanced Wasserstein divergence from mass estimates). Let R ∈ (0,∆/2). If µ ∈
M(Ω) satisfies

|µ|(Bc) ≤ α,
N∑
i=1

|(µ† − µ)(Bi)| ≤ β,

N∑
i=1

∫
Bi

dist(x, xi)
2 d|µ|(x) ≤ γ,

then
W 2

2,R(µ†, µ) ≤ 1
2R

2(α+ β) + γ.

Proof. Homework.
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Theorem 149 (Mass distribution from Bregman distance). Let v† ∈ ∂TV(µ†) ∩ C0(Ω), i. e. |v†| ≤ 1
and v†(xi) = sgn(ai). If v† satisfies

|v†(x)| ≤ 1− κmin{R,dist(x, {x1, . . . , xN})}2

for some κ > 0, R ∈ (0,∆/2), then for any µ ∈M(Ω) we have

|µ|(Bc) ≤ 1

κR2
DTV
v† (µ, µ†),

N∑
i=1

∫
Bi

dist(x, xi)
2 d|µ|(x) ≤ 1

κ
DTV
v† (µ, µ†).

Furthermore, let v ∈ ∂TV(ν) ∩ C0(Ω) for ν =
∑N
i=1(µ − µ†)(Bi)δxi , thus v(xi) = sgn(ν({xi})) for

i = 1, . . . , N . If for some η > 0 the function v satisfies

v(xi)v(x) ≥ 1− ηdist(x, xi)
2 for all x ∈ Bi, i = 1, . . . , N,

then additionally
N∑
i=1

|(µ− µ†)(Bi)| ≤
1 + ηR2

κR2
DTV
v† (µ, µ†) + 〈v, µ− µ†〉.

Proof. • first two inequalities:

κR2|µ|(Bc) + κ

N∑
i=1

∫
Bi

dist(x, xi)
2 d|µ|(x) ≤

∫
Bc

dµ

d|µ|
− v† dµ(x) +

N∑
i=1

∫
Bi

dµ

d|µ|
− v† dµ(x)

=

∫
Ω

dµ

d|µ|
− v† dµ(x) = ‖µ‖M − 〈v†, µ〉 = ‖µ‖M − ‖µ†‖M − 〈v†, µ− µ†〉 = DTV

v† (µ, µ†)

• third inequality:

◦
∑N
i=1 |(µ− µ†)(Bi)| =

∫
B
v d(µ− µ†) +

∑N
i=1

∫
Bi
v(xi)− v d(µ− µ†)

◦
∫
B
v d(µ− µ†) = 〈v, µ− µ†〉 −

∫
Bc
v d(µ− µ†)
≤ 〈v, µ− µ†〉+ |µ− µ†|(Bc) ≤ 〈v, µ− µ†〉+ 1

κR2D
TV
v† (µ, µ†)

◦
∑N
i=1

∫
Bi
v(xi)− v d(µ− µ†) ≤

∑N
i=1

∫
Bi
ηdist(x, xi)

2 d|µ|(x) ≤ η
κD

TV
v† (µ, µ†)

Theorem 150 (Convergence rate of reconstruction). lecture 16Assume that for any ν ∈M(Ω) with spt ν ⊂ sptµ†

a source condition holds with dual variable wν and

| ∗Kwν | < 1− κR2 on Bc, 1− ηdist(x, xi)
2 ≤ −sgn(ν({xi})) ∗Kwν(x) ≤ 1− κdist(x, xi)

2 on Bi

for some κ, η > 0, R ∈ (0,∆/2). Then any minimizer µδα of Jy
δ

α satisfies

W 2
2,R(µ†, µδα) ≤ C 1+(κ+η)R2

κ

(
δ
α + α

)
for some constant C > 0 depending on µ†. The choice α =

√
δ thus yields W 2

2,R(µ†, µδα) ≤ const.
√
δ.

Proof. Homework (combine theorems 109, 148 and 149).
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16 Source conditions: Trigonometric polynomials

For the previous two sections we need the existence of dual variables wν such that − ∗Kwν satisfies
certain growth conditions. As an exemplary case we show when this is possible for K the truncated
Fourier series on [0, 1]. Then g ≡ − ∗Kwν is of the form

g(x) =

k∑
j=−k

cje
2πijx,

i. e. a trigonometric polynomial with maximum frequency k and coefficients cj ∈ C (homework). Hence,

we need to show that for any ν =
∑N
i=1 biδxi with minimum distance ∆ between the xi there exists a

trigonometric polynomial g with maximum frequency k such that

|g| ≤ 1− κR2 on Bc, 1− ηdist(x, xi)
2 ≤ sgn(bi)g(x) ≤ 1− κdist(x, xi)

2 on Bi.

To this end one uses a special basis of trigonometric polynomials.

Definition 151 (Dirichlet kernel, Fejér kernel).

1. The Dirichlet kernel of frequency k is Dk(x) =
∑k
j=−k e

2πijx.

2. The Fejér kernel of frequency k is Fk(x) = 1
k+1

∑k
j=0Dj(x) =

∑k
j=−k(1− |j|

k+1 )e2πijx.

Theorem 152 (Dirichlet kernel, Fejér kernel).

1. Dk(x) = sin((2k+1)πx)
sin(πx)

2. Fk(x) = 1
k+1

(
sin((k+1)πx)

sin(πx)

)2

Proof. 1. geometric series:
∑k
j=−k s

j = s−k
∑2k
j=0 s

j = s−k 1−s2k+1

1−s = s−k−1/2−sk+1/2

s−1/2−s1/2

⇒
∑k
j=−k e

2πixj = e−(2k+1)πix−e(2k+1)πix

e−πix−eπix = −2i sin((2k+1)πx)
−2i sin(πx)

2.
∑k
j=0 sin((2j + 1)πx) = sin2((k+1)πx)

sin(πx)

• induction basis: k = 0

• induction step:
∑k+1
j=0 sin((2j+1)πx) = sin2((k+1)πx)

sin(πx) +sin((2k+3)πx) = sin2((k+1)πx)+sin(πx) sin((2k+3)πx)
sin(πx)

by addition theorems, sin2(t) = (1− cos(2t))/2, thus

sin2((k + 1)πx)− sin2((k + 2)πx) = cos(2(k+2)πx)−cos(2(k+1)πx)
2

= cos((2k+3)πx) cos(πx)−sin((2k+3)πx) sin(πx)−[cos((2k+3)πx) cos(−πx)−sin((2k+3)πx) sin(−πx)]
2

= sin((2k + 3)πx) sin(πx)

Fk(x) = 1
k+1

∑k
j=0Dj(x) = 1

k+1

∑k
j=0

sin((2j+1)πx)
sin(πx) = 1

k+1

(
sin((k+1)πx)

sin(πx)

)2

-0.5 0 0.5
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Theorem 153 (Estimates of Fejér kernel). There exists C > 0 such that on [− 1
2 ,

1
2 ] the Fejér kernel

satisfies

1. 0 ≤ Fk(x) ≤ 1
(k+1) sin2(πx)

,

2. |F ′k(x)| ≤ 3π
sin2(πx)

,

3. |F (j)
k (x)| ≤ C(k+1)j−1

sin2(πx)
, j = 2, 3, 4.

Proof. 1. obvious

2. |F ′k(x)| = 1

k + 1

∣∣∣∣2(k + 1)π sin((k + 1)πx) cos((k + 1)πx)

sin2(πx)
− 2

π cos(πx) sin2((k + 1)πx)

sin3(πx)

∣∣∣∣
=

π

(k + 1) sin2(πx)

∣∣∣k sin(2π(k + 1)x)− 2 cos(πx) sin2((k+1)πx)−sin(πx) sin((k+1)πx) cos((k+1)πx)
sin(πx)

∣∣∣
=

kπ

(k + 1) sin2(πx)

∣∣∣sin(2π(k + 1)x)− 2 sin(kπx)
k sin(πx) sin((k + 1)πx)

∣∣∣
and

∣∣∣ sin(kπx)
k sin(πx)

∣∣∣ ≤ 1

3. homework

The Fejér kernel Fk has a pronounced maximum at 0 and quickly decays to zero away from 0 (for k →∞
it approximates δ0). We now construct a trigonometric polynomial g with

g(xi) = sgn(bi), g′(xi) = 0, i = 1, . . . , N

(and hopefully the xi being global extrema, since we want |g| ≤ 1).

• idea: take g as linear combination of the shifted kernels Fk(x− xi)

• while Fk(x− xi) has a pronounced maximum at xi, the other summands (though small) may shift
the extremum slightly away from xi

• as a remedy, could perturb xi to x̃i; however, finding the correct x̃i is highly nonlinear problem

• instead: exploit Fk(x− x̃i) ≈ Fk(x− xi) + (x̃i − xi)F ′k(x− xi) ⇒ take ansatz

g(x) =

N∑
j=1

αjFk(x− xj) + βjF
′
k(x− xj).

Theorem 154 (Fejér coefficients). lecture 17The coefficients α = (α1, . . . , αN )T and β = (β1, . . . , βN )T satisfy

(
D0
k+1

D1√
2/3π(k+1)2

−D1√
2/3π(k+1)2

−D2
2
3
π2(k+1)3

)
︸ ︷︷ ︸

M

(
(k+1)α√

2/3π(k+1)2β

)
︸ ︷︷ ︸

V

=


sgn(b1)

...
sgn(bN )

0
...
0


︸ ︷︷ ︸

W

for D0 = (Fk(xl − xj))l,j, D1 = (F ′k(xl − xj))l,j, D2 = (F ′′k (xl − xj))l,j.
Moreover, there exists C̄ > 0 such that ∆ ≥ C̄

k+1 implies that the equation is solvable, and

‖V −W‖∞ ≤
C̄

∆2(k + 1)2
.

Proof. • g(xi) = sgn(bi) & g′(xi) = 0 for i = 1, . . . , N

⇔
(
D0 D1

D1 D2

)
( αβ ) = (sgn(b1), · · · , sgn(bN ), 0, · · · , 0)

T

⇔ given equation system with M
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• M is symmetric and diagonally dominant:

– let Md be the diagonal and M̃ the rest of M , i. e.

M = Md + M̃ with Md =


1

. . .
1

1− 1
(k+1)2

. . .
1− 1

(k+1)2

 .

– compute ‖M̃‖∞
∗ for l ≤ N we have∑

j 6=l

|Mlj | =
∑

j 6=l,j≤N

| (D0)lj
k+1 |+

N∑
j=1

| (D1)lj√
2/3π(k+1)2

|

≤
∑

j 6=l,j≤N

1

4(k + 1)2dist2(xj , xl)
+

∑
j 6=l,j≤N

3
√

3

4
√

2(k + 1)2dist2(xj , xl)

≤ 1

2(k + 1)2∆2

1/2∆∑
j=1

1

j2
+

3
√

3

2
√

2(k + 1)2∆2

1/2∆∑
j=1

1

j2
≤ 4

(k + 1)2∆2

∗ again for l ≤ N we have∑
j 6=N+l

|MN+l,j | =
N∑
j=1

| (D1)lj√
2/3π(k+1)2

|+
∑

j 6=l,j≤N

| (D2)lj
2π2(k+1)3/3 |

≤
∑

j 6=l,j≤N

3
√

3

4
√

2(k + 1)2dist2(xj , xl)
+

∑
j 6=l,j≤N

C

(k + 1)2dist2(xj , xl)

≤ 3
√

3

2
√

2(k + 1)2∆2

1/2∆∑
j=1

1

j2
+

2C

(k + 1)2∆2

1/2∆∑
j=1

1

j2
≤ 4C + 4

(k + 1)2∆2

∗ ‖M̃‖∞ ≤ 4C+2
(k+1)2∆2

– ∆ > 2
√

4C+2
k+1 ⇒ ‖M̃‖∞ ≤ 1

4 ⇒ ‖M
−1‖∞ ≤

(
1− 1

(k+1)2 − ‖M̃‖∞
)−1

≤ 2

• ‖V ‖∞ = ‖M−1W‖∞ ≤ ‖M−1‖∞‖W‖∞ ≤ 2 · 1

• MdV −W = −M̃V ⇒ V −W = V −M−1
d W = −M−1

d M̃V

⇒ ‖V −W‖∞ ≤ ‖M−1
d ‖∞‖M̃‖∞‖V ‖∞ ≤

const.
(k+1)2∆2

Theorem 155 (Existence of trigonometric polynomial). There exist constants c1, c2, c3, c4 > 0 such that
if ∆ ≥ c1

k+1 , then g satisfies the desired conditions with R = c2
k+1 , η = c3(k + 1)2, κ = c4(k + 1)2.

Proof. • let wlog. x1 be closest to x, then
(using |F ′′k | ≤ |F ′′k (0)| = 2

3π
2k(k + 1)(k + 2) & |F ′′′k | ≤ 30(k + 1)4)

|g′′(x)| ≤
N∑
i=1

|αi||F ′′k (x− xi)|+ |βi||F ′′′k (x− xi)|

≤ const.k(k + 2) + const.(k + 1)2 +

N∑
i=2

const.

sin2(π(x− xi))
+

const.

sin2(π(x− xi))

≤ C̃

(k + 1)2 +

1/2∆∑
i=1

1

i2∆2

 ≤ Ĉ ((k + 1)2 +
1

∆2

)
≤ Ĉ(1 + 1/c21)(k + 1)2

thus can choose η = Ĉ(1 + 1/c21)(k + 1)2/2 = c3(k + 1)2
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• analogously |g′′′(x)| ≤ const.(1 + 1/c21)(k + 1)3

• wlog. consider second derivative at x1

−sgn(b1)g′′(x1) ≥ −sgn(b1)α1F
′′
k (0)−

N∑
i=2

(|αi||F ′′k (x1 − xi)|+ |βi||F ′′′k (x1 − xi)|)

≥
(

1− C̄

c21

)
2

3
π2k(k + 2)−

N∑
i=2

(
const.

sin2(π(x− xi))
+

const.

sin2(π(x− xi))

)

≥
(

1− C̄

c21

)
2

3
π2k(k + 2)− C̃

1/2∆∑
i=1

1

i2∆2

≥ Č
(

1− Ĉ
c21

)
(k + 1)2

⇒ if c1 is chosen large and c2 small enough, −sgn(b1)g′′(x) > c4(k+1)2 whenever dist(x, x1) ≤ c2
k+1

• ⇒ choose R = c2
k+1 , κ = c4(k + 1)2/2

• Assume R < ∆/2 and Fk(R) ≤ Fk(0) +F ′′k (0)R2 (else decrease c2) and let x ∈ Bc, x1 closest to x.

|g(x)| ≤
N∑
i=1

|αi|Fk(x− xi) + |βi||F ′k(x− xi)|

≤ |α1|Fk(R) + |β1||F ′k(x− x1)|+
N∑
i=2

2

(k + 1)2 sin2(π(x− xi))
+

N∑
i=2

const.

c21(k + 1)2

3π

sin2(π(x− xi))

≤ (1 + const.
c21

)
Fk(R)

k + 1
+

const.

c21
+

const.

(k + 1)2

N∑
i=2

1

dist2(x, xi)

≤ (1 + const.
c21

)
Fk(0) + F ′′k (0)R2

k + 1
+

const.

c21
+

const.

(k + 1)2

1/2∆∑
i=1

1

i2∆2

≤ (1 + const.
c21

)(1− 2
3π

2k(k + 2)R2) +
const.

c21
< 1− κR2 if c4 small, c1 big enough

Remark 156 (Higher dimensions). In higher dimensions one just builds the dual variables as linear
combinations of tensor products Fk(x)Fk(y)Fk(z) · · · of Fejér kernels and their derivatives.

17 Fourier transform lecture 18

The Fourier transform is the forward operator in magnetic resonance tomography. However, it also helps
to express other forward operators (such as convolution or the Radon or X-ray transform) in a basis that
simplifies their understanding. Below all functions will be complex-valued without explicit mention.

Definition 157 (Fourier transform). The Fourier transform is the linear map F : L1(Rd)→ L∞(Rd),

F(f)(ξ) = (2π)−d/2
∫
Rd
f(x)e−ix·ξ dx.

We write f̂ = F(f). If f is vector-valued, F is applied to each component. The inverse Fourier transform
is defined as the linear map F−1 : L1(Rd)→ L∞(Rd),

F(g)(x) = (2π)−d/2
∫
Rd
g(ξ)eix·ξ dξ.

We write f̌ = F−1(f).
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Remark 158 (Fourier transform on Radon measures). One can even extend F (and analogously F−1)
to Radon measures ν by

F(ν)(ξ) = (2π)−d/2
∫
Rd
e−ix·ξ dν(x).

Definition 159 (Multiindex). A multiindex in Rd is a vector α ∈ Nd0. One writes

Dα = ( ∂
∂x1

)α1 · · · ( ∂
∂xd

)αd , xα = xα1
1 · · ·x

αd
d , |α| = α1 + . . .+ αd.

Theorem 160 (Growth properties of Fourier transform).

1. ‖f̂‖L∞ , ‖f̌‖L∞ ≤ (2π)−d/2‖f‖L1

2. f ∈ L1(Rd) ⇒ f̂ , f̌ ∈ C0(Rd)

3. f,∇f ∈ L1(Rd) ⇒ ∇̂f(ξ) = if̂(ξ)ξ

4. g ∈ L1(Rd) for g(x) = xf(x) ⇒ ĝ(ξ) = i∇f̂(ξ)

5. Let α ∈ Nd0. If f is sufficiently differentiable and f , Dαf , fα(x) = xαf(x) are integrable,

D̂αf(ξ) = i|α|ξαf̂(ξ),

f̂α(ξ) = i|α|Dαf̂(ξ).

Thus, a differentiability order of f implies a decay order of f̂ ; a decay order of f implies a differ-
entiability order of f̂ . Analogously for inverse Fourier transform.

Proof. 1. |f̂(ξ)|, |f̌(ξ)| ≤ (2π)−d/2
∫
Rd |f(x)|dx

2. limξ→ξ0 f̂(ξ) = (2π)−d/2 limξ→ξ0
∫
Rd f(x)e−ix·ξ dx

dom. conv. thm.
= (2π)−d/2

∫
Rd f(x)e−ix·ξ0 dx = f̂(ξ0)

3. ∂̂f/∂xi(ξ) = (2π)−d/2
∫
Rd

∂f
∂xi

e−ix·ξ dx = −(2π)−d/2
∫
Rd fe

−ix·ξ(−iξi) dx = iξif̂(ξ)

4. i ∂f̂∂ξi (ξ) = (2π)−d/2
∫
Rd
f(x)e−ix·ξxi dx

5. induction using previous two points

Proposition 161 (Algebraic identities for the Fourier transform).

1. f, g ∈ L1(Rd) ⇒
∫
Rd f(x)ĝ(x) dx =

∫
Rd f̂(x)g(x) dx

2. g(x) = f̄(−x) ⇒ ĝ =
¯̂
f

3. f, f̂ ∈ L1(Rd) ⇒ ¯̂
f = ˇ̄f

4. λ 6= 0, fλ(x) = f(λx) ⇒ f̂λ(ξ) = |λ|−df̂( ξλ )

5. a ∈ Rd, fa(x) = f(x+ a) ⇒ f̂a(ξ) = eia·ξ f̂(ξ)

6. let Fi(f)(x) = F(f(x1, . . . , xi−1, ·, xi+1, . . . , xd))(xi), then F = F1 · · · Fd

7. f(x) = f1(x1) · · · fd(xd) ⇒ f̂(ξ) = f̂1(x1) · · · f̂d(xd)

Proof. 1. f̂ , ĝ ∈ L∞(Rd), and both expressions equal (2π)−d/2
∫
Rd
∫
Rd e

−ix·ξf(x)g(ξ) dxdξ

2. ĝ(ξ) = (2π)−d/2
∫
Rd e

−ix·ξ f̄(−x) dx = (2π)−d/2
∫
Rd e

−ix·ξf(y) dy =
¯̂
f

3. trivial

4. f̂λ(ξ) = (2π)−d/2
∫
Rd f(λx)e−iξ·x dx = (2π)−d/2|λ|−d

∫
Rd f(y)e−i

ξ
λ ·y dy

5. trivial
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6. Fubini: f̂(ξ) = 1√
2π

∫
R

1√
2π

∫
R . . .

1√
2π

∫
R f(x1, . . . , xd)e

−ixdξd dxd . . . e
−ix2ξ2 dx2 e

−ix1ξ1 dx1

7. follows from previous point and linearity

Example 162 (Fourier transforms).

• f(x) = e−|x|
2/2 ⇒ f̂(ξ) = e−|ξ|

2/2

– f(x) = f1(x1) · · · fd(xd) with fi(xi) = e−x
2
i /2, thus sufficient to consider d = 1.

– f ′(x) + xf(x) = 0

– taking Fourier transform, iξf̂(ξ) + if̂ ′(ξ) = 0

– f(0) = 1 and f̂(0) = 1√
2π

∫
R e
−x2/2 dx = 1√

2π

(∫
R
∫
R e
−(x2+y2)/2 dxdy

) 1
2

= 1√
2π

(∫ 2π

0

∫∞
0
e−r

2/2r dr dϕ
) 1

2

=
(

[−e−r2/2]∞0

) 1
2

= 1

– ⇒ f and f̂ solve same ODE with same initial condition

• f(x) = χ[−1,1](x) ⇒ f̂(ξ) =
√

2/πsinc(ξ) for sinc(x) = sin(x)/x if x 6= 0, sinc(0) = 1

– f̂(ξ) = 1√
2π

∫ 1

−1
e−ixξ dx = [ 1

−iξ
√

2π
e−ixξ]1−1 = e−iξ−eiξ

−iξ
√

2π
=
√

2
π sincξ

• ν = δx ⇒ ν̂(ξ) = (2π)−d/2e−ix·ξ

Proposition 163 (Fourier transform of radially symmetric functions). lecture 19If f ∈ L1(Rd) is radially sym-

metric, i. e. f(x) = F (|x|), then so is f̂ with

f̂(ξ) =

∫ ∞
0

rd−1F (r)J(r|ξ|) dr for J(s) = (2π)−d/2
∫
Sd−1

e−is(1 0 ...)T ·θ dHd−1(θ).

For d = 2 we have J = J0 with Jn the nth order Bessel function of the first kind, the bounded solution to

s2J ′′n(s) + sJ ′n(s) + (s2 − n2)Jn(s) = 0 with

∫ ∞
0

Jn(s) = 1.

For d = 3 we have J(s) = 2√
2π

sinc(s).

Proof. Using polar coordinates (r, θ) ∈ [0,∞)× Sd−1,

f̂(ξ) = (2π)−
d
2

∫
Sd−1

∫ ∞
0

f(rθ)e−irθ·ξrd−1 dr dHd−1(θ) =

∫ ∞
0

rd−1F (r)(2π)−
d
2

∫
Sd−1

e−ir|ξ|θ·
ξ
|ξ| dHd−1(θ) dr.

Properties for d = 2 follow by direct calculation. For d = 3,

J(s) = (2π)−3/2

∫
S2

e−is(1 0 0)T ·θ dH2(θ) = (2π)−3/2H1(S1)

∫ π

0

sinϕe−is cosϕ dϕ

= (2π)−3/2H1(S1)
[
e−is cosϕ

is

]π
ϕ=0

= 2(2π)−3/2H1(S1)sinc(s).

Theorem 164 (Convolution theorem). If f, g ∈ L1(Rd), then f̂ ∗ g = (2π)d/2f̂ ĝ.

Proof. By Young’s convolution theorem, f ∗ g ∈ L1(Rd).

f̂ ∗ g(ξ) = (2π)−d/2
∫
Rd
e−ix·ξ

∫
Rd
f(z)g(x− z) dz dx

= (2π)−d/2
∫
Rd
e−iz·ξf(z)

∫
Rd
e−i(x−z)·ξg(x− z) dx dz

= ĝ(ξ)

∫
Rd
e−iz·ξf(z) dz

= (2π)d/2f̂(ξ)ĝ(ξ)
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Theorem 165 (Plancherel’s theorem). If f ∈ L1(Rd) ∩ L2(Rd), then ‖f̂‖L2 = ‖f‖L2 .

Proof. • ‖f‖2L2 = (f ∗ g)(0) for g(x) = f̄(−x)

• ‖f̂‖2L2 =
∫
Rd |f̂ |

2 dξ = (2π)−d/2
∫
Rd f̂ ∗ g dξ

• set vε(x) = e−ε|x|
2/2, then v̂ε(ξ) = ε−d/2e−|ξ|

2/2ε and

v̂ε(ξ) ≥ 0,
∫
Rd v̂ε(ξ) dξ =

∫
Rd e

−|ξ|2/2 dξ = (2π)d/2, v̂ε −−−→
ε→0

(2π)d/2δ0

• set w = f ∗ g, then ŵ = (2π)d/2|f̂ |2 ≥ 0 and w ∈ C0(Rd) since

lim
h→0

w(x+ h) = lim
h→0

(f ∗ g(·+ h))(x) = f ∗ g(x) due to g(·+ h) −−−→
h→0

g in L2(Rd)

• (2π)d/2w(0) = lim
ε→0

∫
Rd
w(x)v̂ε(x) dx = lim

ε→0

∫
Rd
ŵ(x)vε(x) dx

mon. conv. thm.
=

∫
Rd
ŵ dξ

Theorem 166 (Parseval’s theorem). If f, g ∈ L1(Rd) ∩ L2(Rd), then (f, g)L2 = (f̂ , ĝ)L2 .

Proof. (f, g)L2 + (g, f)L2 = ‖f + g‖2L2 −‖f‖2L2 −‖g‖2L2 = ‖f̂ + ĝ‖2L2 −‖f̂‖2L2 −‖ĝ‖2L2 = (f̂ , ĝ)L2 + (ĝ, f̂)L2

i(f, g)L2 − i(g, f)L2 = ‖if + g‖2L2 − ‖f‖2L2 − ‖g‖2L2 = ‖if̂ + ĝ‖2L2 − ‖f̂‖2L2 − ‖ĝ‖2L2 = i(f̂ , ĝ)L2 − i(ĝ, f̂)L2

take first equation minus i times second

Theorem 167 (Inverse Fourier transform). If f, f̂ ∈ L1(Rd) ∩ L2(Rd), then F−1Ff = FF−1f = f .

Proof. (g, f̄)L2 = (ĝ, ˆ̄f)L2 = (ĝ, ¯̌f)L2 =
∫
Rd ĝf̌ dx =

∫
Rd g

ˆ̌f dx = (g,
¯̌̂
f)L2 ∀g ∈ L1(Rd) ∩ L2(Rd)

analogously
ˇ̂
f = f

Corollary 168 (Fourier transform on L2). The Fourier transform and inverse Fourier transform can
be uniquely extended to isometric isomorphisms of L2(Rd) which are inverses of each other and satisfy
proposition 161 with L1 replaced by L2.

Proof. • F , F−1 are isometries on the dense subset L1 ∩ L2 of L2

• unique norm-preserving extension onto L2 by Hahn–Banach

• FF−1f = F−1Ff = f for the dense subset L1 ∩ L2 ∩ C∞ of L2

• all properties extend by continuity

Remark 169 (Integral representation of Fourier transform). For an L2-function f we might sometimes

write f̂(ξ) =
∫
Rd f(x)e−ix·ξ dx even though the integral is actually not well-defined; it then has to be

interpreted as the limit of
∫
Rd fn(x)e−ix·ξ dx for a sequence fn ∈ L1(Rd) ∩ L2(Rd) with fn → f in

L2(Rd).

Summarizing, the great strengths of the Fourier transform are that it is an isometric isomorphism
(i. e. an orthonormal basis change) on L2(Rd) that turns convolution into pointwise multiplication and
differentiation into multiplication with the frequency.

18 Tempered distributions

The Fourier transform and related transforms can actually be extended to much larger spaces. As an
example we have already seen the extension to measures. We will extend it to the dual space of the
so-called Schwartz space, the so-called tempered distributions.
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Definition 170 (Schwartz space). The Schwartz space of rapidly decaying functions is the function
space

S(Rd) = {f ∈ C∞(Rd) | ‖f‖n <∞∀n ∈ N}

with the (semi-)norms
‖f‖n = sup

x∈Rd
max
|α|,|β|≤n

|xαDβf(x)|

(with respect to which it is not complete). It becomes a Fréchet space (a complete metric space) with the
metric

dS(f, g) =

∞∑
n=1

1

2n
‖f − g‖n

1 + ‖f − g‖n
.

Example 171 (Schwartz functions).

• infinitely smooth functions with compact support, e. g.

f(x) =

{
exp(− 1

1−|x|2 ) if |x| ≤ 1

0 else

or its translations, scalings, sums, convolutions with compactly supported functions

• normal distribution f(x) = exp(−|x|2/2)

It can readily be checked that fn → f in S(Rd) if and only if ‖fn−f‖k → 0 for all k and that differentiation
Dα and translation f 7→ f(x−·) are continuous from S(Rd) into itself. Likeweise, pointwise multiplication
S(Rd)×S(Rd)→ S(Rd) is continuous. Note further that for B ⊂ Rd the unit ball with complement Bc

and for p(x) = |x|−d−1 and any f : Rd → C we have

‖f‖L1 =

∫
B

|f |dx+

∫
Bc
|f |dx ≤ Ld(B)‖f‖0+‖p‖L1(Bc)‖f/p‖L∞(Bc) ≤ (Ld(B)+Hd−1(Sd−1))C(d)‖f‖d+2

with a constant C(d) depending on the dimension.

Theorem 172 (Fourier transform on Schwartz space). F is a continuous automorphism on S(Rd).

Proof. • ξαDβ f̂(ξ) = i|β|ξαf̂β(ξ) = i|α|+|β|D̂αfβ(ξ) for fβ(x) = xβf(x)

• thus ‖f̂‖n = max|α|,|β|≤n ‖D̂αfβ‖L∞ ≤ max|α|,|β|≤n ‖Dαfβ‖L1 ≤ const.‖f‖n+d+2

• thus f ∈ S(Rd) ⇒ f̂ ∈ S(Rd), and F is continuous in 0 ∈ S(Rd) and thus on S(Rd)

• analogously, F−1 is continuous from S(Rd) into itself

Definition 173 (Tempered distributions). lecture 20The space S ′(Rd) of tempered distributions on Rd is the

space of continuous linear functionals S(Rd)→ C.

Example 174 (Tempered distributions).

• Any g ∈ Lp(Rd) induces a tempered distribution Tg via Tg(f) =
∫
Rd fg dx.

• Any ν ∈M(Rd) induces a tempered distribution Tν via Tν(f) =
∫
Rd f dν.

• Let α ∈ Nd0, x ∈ Rd, then Tα,x ∈ S ′(Rd) for Tα,x(f) = Dαf(x).

• Any polynomial g on Rd induces a tempered distribution Tg via Tg(f) =
∫
Rd fg dx.

• Special cases: δx,
∫
S
·dHk ∈ S(Rd) for x ∈ Rd, S ⊂ Rd k-dimensional and smooth

(think of X-ray/Radon transform)

We will identify Lp-functions or Radon measures with distributions, thus Lp(Rd),M(Rd) ⊂ S ′(Rd).
Below, by a tilde we will denote the map

f 7→ f̃ , f̃(x) = f(−x).
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Definition 175 (Operations on distributions). Let T ∈ S ′(Rd), g ∈ S(Rd), α ∈ Nd0.

1. The (distributional) derivative DαT ∈ S ′(Rd) of T is defined by

(DαT )(f) = (−1)|α|T (Dαf).

2. The product gT ∈ S ′(Rd) of T with g is defined by

(gT )(f) = T (gf).

3. The convolution T ∗ g ∈ S ′(Rd) of T with g is defined by

(T ∗ g)(f) = T (g̃ ∗ f).

4. The Fourier transform and inverse Fourier transform T̂ , Ť ∈ S ′(Rd) of T are defined by

T̂ (f) = T (f̂), Ť (f) = T (f̌).

Remark 176 (Motivation for formulas). The above formulas are chosen for consistency with the case
when T equals a Schwartz function φ ∈ S(Rd), in which∫

Rd D
αφ f dx = (−1)|α|

∫
Rd φD

αf dx,∫
Rd(φg) f dx =

∫
Rd φ (gf) dx,∫

Rd(φ ∗ g) f dx =
∫
Rd φ (g̃ ∗ f) dx,∫

Rd φ̂ f dx =
∫
Rd φ f̂ dx.

Example 177 (Fourier transform of Dirac & 1/|x|).

• δ̂0(f) = δ0(f̂) = f̂(0) = (2π)−
d
2

∫
Rd f dx, thus δ̂0 = (2π)−

d
2

• f(x) = 1
|x| in R2 ⇒ f̂(ξ) =

∫∞
0
J0(r|ξ|) dr = 1

|ξ|

Obviously ˆ̌T =
ˇ̂
T = T and T̂ ∗ g = ĝT̂ .

Since differentiation, multiplication and the Fourier transform are continuous on S(Rd), the above def-
initions of distributional derivative and (inverse) Fourier transform are well-defined (they indeed yield
tempered distributions). The well-definedness of the convolution follows from the following.

Theorem 178 (Convolution of tempered distributions). Let T ∈ S ′(Rd) and g ∈ S(Rd), then T ∗ g ∈
S ′(Rd) is well-defined. Moreover we have T ∗ g ∈ C∞(Rd) and (T ∗ g)(x) = T (g(x− ·)).

Proof. 1. Let f ∈ S(Rd), then T ∗ g(f) is well-defined.

• f, g ∈ S(Rd) ⇒ f, g̃ ∈ L1(Rd) ⇒ g̃ ∗ f ∈ L1(Rd)

• ˆ̃g, f̂ ∈ S(Rd) ⇒ ˆ̃gf̂ ∈ S(Rd) ⇒ g̃ ∗ f = (2π)d/2(ˆ̃gf̂ )̌ ∈ S(Rd)

2. T ∗ g is linear (trivial) and continuous on S(Rd), thus T ∗ g ∈ S ′(Rd):

• due to linearity suffices to show continuity in 0, so let fn → 0 in S(Rd)

• ⇒ f̂n → 0 in S(Rd) ⇒ ˆ̃gf̂n → 0 in S(Rd) ⇒ g̃ ∗ fn → 0 in S(Rd) ⇒ T (g̃ ∗ fn)→ 0

3. T ∗ g(x) = T (g(x− ·)):

• let fn
∗
⇀ δx in M(Rd), then g̃ ∗ fn → g(x− ·) in S(Rd)

• thus limn→∞(T ∗ g)(fn) = limn→∞ T (g̃ ∗ fn) = T (g(x− ·))

4. Abbreviate h(x) = T (g(x− ·)), then h ∈ C∞(Rd), since Dαh(x) = T ((Dαg)(x− ·)) for all α ∈ Nd0:
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• suffices to consider α = (1 0 . . . 0)
(other first derivatives follow analogously and higher ones by induction)

• note g(x+(ε 0...0)−·)−g(x−·)
ε →ε→0 ∂x1

g(x− ·) in S(Rd)

• ∂x1
h(x) = limε→0 T ( g(x+(ε 0...0)−·)−g(x−·)

ε ) = T (limε→0
g(x+(ε 0...0)−·)−g(x−·)

ε ) = T (∂x1
g(x− ·))

Remark 179 (Convolution theorem). Under additional conditions on two tempered distributions R, T
(e. g. when their singular supports are disjoint) one can even define their product and sometimes even
their convolution or the product of their Fourier transforms. In those cases the convolution theorem

T̂ ∗R = (2π)d/2T̂ R̂ still holds.

Definition 180 (Shift-invariance). A bounded linear operator A : Lp(Rd)→ Lq(Rd), 1 ≤ p ≤ q ≤ ∞, is
called shift-invariant if it commutes with translation by z ∈ Rd, that is, A(f(·+ z)) = (Af)(·+ z).

Convolutions f 7→ T ∗ f are shift-invariant. In fact, they are the only such operators.

Theorem 181 (Shift-invariant operators and convolutions). Let A : Lp(Rd) → Lq(Rd) be a bounded
linear shift-invariant operator, then there exists T ∈ S ′(Rd) with Af = T ∗ f for all f ∈ S(Rd).

Proof. • Dα(Af) = A(Dαf) (for f sufficiently differentiable):

– suffices to consider α = (1 0 . . . 0)
(other first derivatives follow analogously and higher ones by induction)

– set fh(x) = f(x1 + h, x2, . . . , xd), then

‖A( fh(x)−f(x)
h )−A(∂x1

f)‖Lq = ‖A( fh(x)−f(x)
h −∂x1

f)‖Lq ≤ ‖A‖‖ fh(x)−f(x)
h −∂x1

f‖Lp →h→0 0

– thus, pointwise limit as h → 0 of (Af)(x1+h,x2,...,xd)−Af(x)
h = Afh(x)−Af(x)

h = A( fh(x)−f(x)
h )

exists a. e. and equals A(∂x1f)

• if Af = T ∗ f ∀f ∈ S(Rd), then necessarily T (f) = T (f̃(0− ·)) = T ∗ f̃(0) = Af̃(0) ∀f ∈ S(Rd)

• T ∈ S ′(Rd):

– T is linear

– |T (f)| = |Af̃(0)| ≤ ‖Af̃‖C0 . ‖Af̃‖Wd+1,q . max|α|≤d+1 ‖Dα(Af̃)‖Lq and

‖Dα(Af̃)‖pLq = ‖A(Dαf̃)‖pLq . ‖D
αf̃‖pLp

= ‖Dαf‖pLp ≤ ‖(1 + |x|2)dp|Dαf |p‖L∞‖(1 + |x|2)−dp‖L1 . ‖f‖p|α|+2d,

thus |T (f)| ≤ ‖f‖3d+1

• let f ∈ S(Rd), then (Af)(x) = A(f(x+ ·))(0) = T (f(x− ·)) = (T ∗ f)(x)

Remark 182 (Forward operator of microscopy). Ignoring boundary effects due to a microscope’s finite
field of view, the forward operator of any microscopy is shift-invariant: Shifting the sample results in the
same shift of the recorded image. Thus the forward operator is a convolution, whose kernel is found by
imaging a Dirac measure.

Remark 183 (Space of test functions and distributions). The tempered distributions S ′(Rd) actually
form a subspace of the space D′(Rd) of distributions, the continuous linear functionals on the space
D(Rd) = C∞c (Rd) of test functions (infinitely smooth functions with compact support). For these distri-
butions, differentiation, multiplication and convolution can be defined in the same way as for tempered
distributions, but the Fourier transform cannot: In the defining equality T̂ (f) = T (f̂), both f and f̂
would have to have compact support, which is impossible by the Schwartz–Paley–Wiener theorem.
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19 Radon and X-ray transform lecture 21

For θ ∈ Sd−1 let us abbreviate θ⊥ = {x ∈ Rd |x · θ = 0}.

Definition 184 (Radon, X-ray, and divergent beam transform). Let

C = Sd−1 × R ⊂ Rd+1,

C′ = {(θ, s) ∈ Sd−1 × Rd | s ∈ θ⊥} ⊂ R2d,

C′′ = Sd−1 × Rd ⊂ R2d.

The Radon, X-ray, and divergent beam transform are defined as the linear maps

R : S(Rd)→ S(C), Ru(θ, s) =

∫
{x∈Rd | x·θ=s}

u(x) dHd−1(x),

P : S(Rd)→ S(C′), Pu(θ, s) =

∫ ∞
−∞

u(s+ tθ) dt,

D : S(Rd)→ C∞(C′′), Du(θ, s) =

∫ ∞
0

u(s+ tθ) dt.

The divergent beam transform is also known as fanbeam transform in two and as conebeam transform
in three space dimensions. We write Rθu = Ru(θ, ·), Pθu = Pu(θ, ·), Dsu = Du(·, s).

θ

θ

s

Radon transform X-ray transform divergent beam transform

original u “sinogram” Ru (↓ S1; → R)

Remark 185 (Extension to Radon measures). The transforms can be extended to act on Radon measures
ν ∈M(Rd) via

Rθν = [x 7→ x · θ]#ν ∈M(R),

Pθν = [x 7→ x− (x · θ)θ]#ν ∈M(θ⊥),

Dsν = [x 7→ x−s
|x−s| ]#

ν ∈M(Sd−1).

Remark 186 (Point symmetry). The Radon and X-ray transform satisfy the point symmetry

Ru(θ, s) = Ru(−θ,−s), Pu(θ, s) = Pu(−θ, s).

42



Remark 187 (Relation between the transforms in two and higher dimensions). In d = 2 dimensions,

Ru(θ, s) = Pu(θ′, sθ′) or equivalently Pu(θ, s) = Ru(θ′, θ′ · s),

where θ′ = (−θ2 θ1)T denotes the counterclockwise rotation by π
2 . In higher dimensions one can express

the Radon transform Rθ as an integral of the X-ray transform Pϕ with any ϕ ∈ θ⊥ ∩ Sd−1 via

Ru(θ, s) =

∫
{x∈ϕ⊥ | x·θ=s}

Pu(ϕ, x) dHd−2(x).

Similarly, the X-ray transform Pθ can be reduced to a family of two-dimensional Radon transforms Rϕ
with any ϕ ∈ θ⊥ ∩ Sd−1 via

Pu(θ, s) = Rũ((0 1)T , 0) with ũ(x) = u(s+ (θ|ϕ)x).

Finally, in any dimension,
Pu(θ, s) = Du(θ, s) +Du(−θ, s).

Remark 188 (Forward operator in X-ray and emission tomography). The X-ray transform is the forward
operator of emission tomography: A (radioactive) mass at a point leads to photon emissions along all
lines through that point; thus one measures total mass along every line in space.
The divergent beam transform on a subset of C′′ (typically on Sd−1 × C for a one-dimensional curve
around the imaged object) is the forward operator of computed tomography: An X-ray point source is
moved around the imaged object, and the arriving X-ray intensity is measured in a grid of detectors on
the opposite side.
For sufficiently large distances between the X-ray source and the imaged object one can approximate the
divergent beam transform by the X-ray transform.
In reality the situation is slightly more complicated: The photons in emission tomography may be absorbed
(or even scattered) so that the X-ray transform actually has to be replaced by the so-called attenuated
X-ray transform. Likewise, the X-ray intensity in computed tomography actually is proportional to the
negative exponential of the divergent beam transform so that first the logarithm of the measurements has
to be taken. However, if the X-ray source is not monoenergetic and the imaged materials show different
absorption behaviour for X-rays of different energies, one cannot remove the exponential nonlinearity
from the forward operator.

20 Inverse formulas for Radon and X-ray transform

Computing the inverse operator is usually based on a particular relation with the Fourier transform. To
this end it is helpful to define the Fourier transform on a k-dimensional subspace M of Rd: Given a
complex-valued function or Radon measure u on M and an orthonormal basis θ1, . . . , θk of M , we set

FMu : M → C, FMu(ξ1θ1+. . .+ξkθk) = F ũ(ξ1, . . . , ξk), where ũ(x1, . . . , xk) = u(x1θ1+. . .+xkθk).

FM is independent of the chosen orthonormal basis. We also write û = FMu.

Theorem 189 (Projection-slice theorem). Let M ⊂ Rd be a k-dimensional subspace and denote by
πM :M(Rd)→M(M) the projection onto and by σM : C0(Rd)→ C0(M) the restriction to M ,

πMν = PM#ν, σMu = u|M .

Then FMπM = (2π)(d−k)/2σMF on M(Rd).

Proof. Let ν ∈M(Rd), fix orthonormal basis θ1, . . . , θk of M , set π̃Mν(s) = πMν(s1θ1 + . . .+ skθk).

(2π)(d−k)/2σMFν(ξ1θ1 + . . .+ ξkθk) = (2π)−k/2
∫
Rd
e−i(ξ1θ1+...+ξkθk)·x dν(x)

= (2π)−k/2
∫
Rk
e−iξ·s d[x 7→ (θ1 · x, . . . , θk · x)]#ν(s)

= (2π)−k/2
∫
Rk
e−iξ·s dπ̃Mν(s)

= FMπMν(ξ1θ1 + . . .+ ξkθk).
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Corollary 190 (Fourier slice theorem). lecture 22Let u ∈ S(Rd), θ ∈ Sd−1, then

R̂u(θ, ξ) = (2π)(d−1)/2û(ξθ) ∀ξ ∈ R,

P̂ u(θ, ξ) = (2π)1/2û(ξ) ∀ξ ∈ θ⊥,

where the Fourier transform on the left-hand side is with respect to the second argument.

Proof. Ru(θ, ·) = πMu for M = span{θ} (identifying on the left-hand side R with M);
Pu(θ, ·) = πMu for M = θ⊥.

Remark 191 (Fourier slice theorem for divergent beam transform). A Fourier slice theorem for the
divergent beam transform does not exist in a simple form. People seem to have generalized it to this
setting, though (see Zhao, Halling: A new Fourier method for fan beam reconstruction, 1995).

Corollary 192 (Transforms and convolution/differentiation). Let u, v ∈ S(Rd).

1. Rθ(u ∗ v) = Rθu ∗Rθv and Pθ(u ∗ v) = Pθu ∗ Pθv

2. RθD
αu = θαD|α|Rθu and PθD

αu = Dα((Pθu) ◦ Pθ⊥)

Proof. Homework

In addition, formulas for the inverse transforms involve the backprojection.

Definition 193 (Backprojection). The backprojections of the Radon, X-ray, and divergent beam trans-
form are defined as

R# : S(C)→ C∞0 (Rd), R#v(x) =

∫
Sd−1

v(θ, x · θ) dHd−1(θ),

P# : S(C′)→ C∞0 (Rd), P#v(x) =

∫
Sd−1

v(θ, Pθ⊥x) dHd−1(θ),

D# : S(C′′)→ C∞0 (Rd), D#v(x) =

∫
Sd−1

∫ ∞
0

v(θ, x− tθ) dtdHd−1(θ).

Theorem 194 (Backprojection). The backprojections are well-defined, i. e. indeed map into C∞0 (Rd).

Proof. • differentiation Dα can be pulled into the integral

⇒ yields integral of same type of a Schwartz function (e. g. of θα∂
|α|
s v(θ, x · θ) in case of R#)

⇒ suffices to show that such integrals decay to zero

• let v ∈ S(C), then lim|x|→∞R#v(x) = 0: Let ε > 0 arbitrary.

– for x ∈ Rd, n > 0 set S(x, n) = {θ ∈ Sd−1 | |x · θ| < n} = {θ ∈ Sd−1 | | x|x| · θ| <
n
|x|}

– pick n > 0 such that |v(θ, s)| < ε for |s| > n

– pick m > 0 such that Hd−1(S(x, n)) < ε for |x| > m

– if |x| > m,

|R#v(x)| ≤

∣∣∣∣∣
∫
S(x,n)

v(θ, x · θ) dθ

∣∣∣∣∣+

∣∣∣∣∣
∫
Sd−1\S(x,n)

v(θ, x · θ) dθ

∣∣∣∣∣
≤ Hd−1(S(x, n)) sup

(θ,s)∈C
|v(θ, s)|+Hd−1(Sd−1)ε ≤ ε( sup

(θ,s)∈C
|v(θ, s)|+Hd−1(Sd−1))

• analogous for other backprojections

The integrals of the backprojection in fact also make sense for less regular functions v than Schwartz
functions. The backprojection applied to v = Au with A being R, P , or D moves all measurements to
where they potentially stem from (hence the name; its result is sometimes called a layergram). Using
microlocal analysis one can show that this way on can identify the singularities of the imaged object,
however, the singularities will be of a slightly different type so that to the human eye the backprojection
looks very different from the imaged object.
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Remark 195 (Backprojection does not map into Schwartz space). Note that the backprojection does

not map into Schwartz space. For instance, let v(θ, s) = e−s
2/2, then

R#v(x) =

∫
Sd−1

e−(x·θ)2/2 dHd−1(θ) >

∫
S(x,n)

e−n
2/2 dHd−1 = e−n

2/2Hd−1(S(x, n)) & e−n
2/2( n|x| )

d−1.

Theorem 196 (Adjoint transform). The backprojection A# with A being R, P , or D is the adjoint A∗

restricted to Schwartz space, i. e. for all u ∈ S(Rd), v ∈ S(C) with C being C, C′, or C′′ we have

〈Ru, v〉S,S′ = 〈u,R#v〉S,S′ 〈Pu, v〉S,S′ = 〈u, P#v〉S,S′ 〈Du, v〉S,S′ = 〈u,D#v〉S,S′ .

Proof. Homework

Remark 197 (Generalization of transforms). The Radon, X-ray, and divergent beam transform can be
extended to the space E ′(Rd) of distributions of compact support (the dual space to E(Rd) = C∞(Rd),
where E ′(Rd) ⊂ S ′(Rd) ⊂ D′(Rd)) by simply defining them as the adjoint of their backprojection. For
compactly supported Radon measures, for instance, this will yield the same extension as in remark 185.
Note that non-compactly supported Radon measures do not lie in E ′(Rd), but only in the dual space to
C∞0 (Rd). Hence an extension to all Radon measures needs to exploit that the backprojection of a Schwartz
function decays to zero at infinity. For this it is essential to have measurements along all angles θ ∈ Sd−1

(or at least angles from a relatively open subset): If we for instance only measure v = Rθu for a single

angle θ, then the corresponding backprojection would be R#
θ v(x) = v(x · θ), which is constant on θ⊥.

Similarly, the backprojections can be extended to tempered distributions (distributions of compact support
in case of D#) by interpreting them as the adjoint of R, P , and D, respectively.

Theorem 198 (Convolution theorem for projection transforms). For u ∈ S(Rd) and v ∈ S(C) with
C = C or C = C′, respectively, we have

(R#v) ∗ u = R#(v ∗Ru),

(P#v) ∗ u = P#(v ∗ Pu),

where the convolution on the right-hand side is with respect to the second argument.

Proof. Only for R (analogous for P ).

R#v ∗ u(x) =

∫
Rd
R#v(x− y)u(y) dy

=

∫
Rd

∫
Sd−1

v(θ, (x− y) · θ) dHd−1(θ)u(y) dy

=

∫
Sd−1

∫
Rd
v(θ, (x− y) · θ)u(y) dy dHd−1(θ)

y=sθ+z
=

∫
Sd−1

∫
R

∫
θ⊥
v(θ, x · θ − s)u(sθ + z) dHd−1(z) dsdHd−1(θ)

=

∫
Sd−1

∫
R
v(θ, x · θ − s)Ru(θ, s) dsdHd−1(θ)

=

∫
Sd−1

(v ∗Ru)(θ, x · θ) dHd−1(θ)

= R#(v ∗Ru)(x)

The final ingredient for the inverse operator is the Riesz potential.

Definition 199 (Riesz potential). lecture 23For α < d the linear operator Iα : S(Rd)→ L∞(Rd) is defined by

Îαu(ξ) = |ξ|−αû(ξ).

Iαu is called the Riesz potential of u. If applied to functions on C or C′, it shall act on the second variable.
Iα is injective; its inverse on its range is denoted I−α, since for α > −d, (Iα)−1|S(Rd) obviously coincides
with the Riesz potential of exponent −α.
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The Riesz potential lies in L∞(Rd), because Îαu ∈ L1(Rd) for u ∈ S(Rd). It can be thought of as the
inversion of the fractional Laplacian −∆α/2, which in Fourier space becomes multiplication with |ξ|α.
For α > 0 it is thus a smoothing operator, and for α nonpositive and even it maps into Schwartz space.

Lemma 200 (Integral formula). For f ∈ L1(Rd) we have∫
Rd
f(x) dx =

1

Hd−2(Sd−2)

∫
Sd−1

∫
θ⊥
|s|f(s) dHd−1(s) dHd−1(θ).

Proof. • Let S = {(θ, ϕ) ∈ Sd−1 × Sd−1 | θ ⊥ ϕ} and proj2 : S → Sd−1, proj2(θ, ϕ) = ϕ, then

proj2#(Hd−1 ⊗Hd−2)xS = proj2#(Hd−2 ⊗Hd−1)xS = Hd−2(Sd−2)Hd−1xSd−1.

• In each subspace θ⊥ use polar coordinates (r, ϕ):∫
Sd−1

∫
θ⊥
|s|f(s) dHd−1(s) dHd−1(θ) =

∫
Sd−1

∫
Sd−1∩θ⊥

∫ ∞
0

rd−1f(rproj2(θ, ϕ)) dr dHd−2(ϕ) dHd−1(θ)

= Hd−2(Sd−2)

∫
Sd−1

∫ ∞
0

rd−1f(rϕ) dr dHd−1(ϕ) = Hd−2(Sd−2)

∫
Rd
f(x) dx.

Theorem 201 (Riesz inversion formula). Let u ∈ S(Rd), then for any α < d we have

u = 1
2 (2π)1−dI−αR#Iα−d+1(Ru),

u = 1
Hd−2(Sd−2)

(2π)−1I−αP#Iα−1(Pu).

Proof. Iαu(x) = (2π)−d/2
∫
Rd
eix·ξ|ξ|−αû(ξ) dξ

= (2π)−d/2
∫
Sd−1

∫ ∞
0

eisx·θsd−1−αû(sθ) dsdHd−1(θ)

= (2π)
1
2−d

∫
Sd−1

∫ ∞
0

eisx·θsd−1−αR̂u(θ, s) dsdHd−1(θ)

= (2π)
1
2−d

1

2

∫
Sd−1

∫
R
eisx·θ|s|d−1−αR̂u(θ, s) dsdHd−1(θ)

= (2π)1−d 1

2

∫
Sd−1

Iα+1−dRu(θ, x · θ) dHd−1(θ)

= 1
2 (2π)1−dR#Iα+1−d(Ru)(x)

Iαu(x) = (2π)−d/2
∫
Rd
eix·ξ|ξ|−αû(ξ) dξ

= (2π)−d/2
1

Hd−2(Sd−2)

∫
Sd−1

∫
θ⊥
eix·s|s|1−αû(s) dHd−1(s) dHd−1(θ)

= (2π)−(d+1)/2 1

Hd−2(Sd−2)

∫
Sd−1

∫
θ⊥
eiPθ⊥x·s|s|1−αP̂ u(θ, s) dHd−1(s) dHd−1(θ)

= (2π)−1 1

Hd−2(Sd−2)

∫
Sd−1

Iα−1Pu(θ, Pθ⊥x) dHd−1(θ)

= 1
Hd−2(Sd−2)

(2π)−1P#Iα−1(Pu)

Remark 202 (Riesz inversion formula for Radon transform). For the Radon transform, the case α = d−1
is known as ρ-filtered layergram (one takes the layergram and applies a filter which in Fourier space is
ρ1−n for ρ the radial variable), the case α = 0 as filtered backprojection (one first filters or sharpens the
measurement via I1−d before applying the backprojection).
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Remark 203 (Locality of Radon transform). For odd dimension d (in particular d = 3) the ρ-filtered
layergram and the filtered backprojection obviously read

u(x) = 1
2 (2π)1−d(−∆x)

d−1
2

∫
Sd−1

Ru(θ, x · θ) dHd−1(θ),

u(x) = 1
2 (2π)1−d

∫
Sd−1

(−1)
d−1
2 ∂d−1

2 Ru(θ, x · θ) dHd−1(θ)

with ∆x the Laplace operator in the x-variable. As these formulas tell, the inversion of the Radon
transform is local in the sense that to reconstruct u at a point x from Ru, one only requires the values
of Ru belonging to hyperplanes arbitrarily close to x.
This is not true for the Radon transform in even dimensions (or for the X-ray transform, which, as we
know, is related to families of 2D Radon transforms). In particular there exist Schwartz functions u that
are nonzero on the unit ball, but satisfy Ru = 0 on Sd−1 × [−1, 1].

Corollary 204 (Representation of A#A). Let u ∈ S(Rd), then

R#Ru = Hd−2(Sd−2)g ∗ u for g(x) = |x|−1,

P#Pu = 2h ∗ u for h(x) = |x|1−d.

Proof. ĝ(ξ) = (2)d/2−1Γ((d−1)/2)
Γ(1/2) |ξ|1−d

ĥ(ξ) = 21−d/2Γ(1/2)
Γ((d−1)/2) |ξ|

−1

Hd−2(Sd−2) = 2π(d−1)/2

Γ((d−1)/2)

Γ(1/2) =
√
π

R̂#Ru(ξ) = 2(2π)d−1Îd−1u(ξ) = 2(2π)d−1|ξ|1−dû(ξ)

= πd−12d/2+1Γ(1/2)
Γ((d−1)/2) ĝ(ξ)û(ξ) = (2π)d/2Hd−2(Sd−2)ĝ(ξ)û(ξ) = Hd−2(Sd−2)ĝ ∗ u(ξ)

P̂#Pu(ξ) = 2πHd−2(Sd−2)Î1u(ξ) = 4π(d+1)/2

Γ((d−1)/2) |ξ|
−1û(ξ) = 2(2π)d/2ĥ(ξ)û(ξ) = 2ĥ ∗ u(ξ)

Remark 205 (Extension onto L2). Similarly to the comment on Radon measures in remark 197 one can
extend A ≡ R or A ≡ P to a bounded linear operator A : L2(Rd)→ S ′(C) with C being C or C′ (simply by
setting ∗A = A#). From the above formulas we see that this extension cannot be continuous into L2(C):
This would imply ∗A = AH = A# : L2(C)→ L2(Rd) to be bounded so that also A#A : L2(Rd)→ L2(Rd)
is bounded, which is false. Exemplarily, consider d = 2, in which case R#R = P#P . Let g1 be the
restriction of g to the unit ball and g2 to the complement, then g1 ∈ L1(R2) and g2 ∈ Lp(R2) \ L2(R2)
for any p > 2. By Young’s convolution theorem there exists a u ∈ L2(R2) with g2 ∗ u /∈ L2(R2) (while
g1 ∗ u ∈ L2(R2)), thus g ∗ u = g1 ∗ u+ g2 ∗ u /∈ L2(R2).

Remark 206 (Ill-posedness). Since we defined them on an unbounded domain, the Radon or X-ray
transform are not compact on shift-invariant function spaces (cf. theorem 42). Still their inversion is
ill-posed, e. g. with respect to the L2-metric on domain and codomain. For instance, in d = 2 dimensions

we have P̂#Pu(ξ) = R̂#Ru(ξ) = const.û(ξ)/|ξ| so that a small perturbation of P#Pu = R#Ru leads to
an arbitrarily large change of u, if the perturbation happened at low frequencies (recall that the Fourier
transform is an isometry on L2(Rd)).

21 The range of Radon and X-ray transform lecture 24

Theorem 207 (Helgason–Ludwig consistency/moment conditions). If u ∈ S(Rd), then for any m ∈ N0

there exist polynomials pm, qm homogeneous of degree m with∫
R
smRθu(s) ds = pm(θ),

∫
θ⊥

(x · y)mPθu(x) dHd−1(x) = qm(y) ∀θ ∈ Sd−1, y ∈ θ⊥.
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Proof.
∫
R s

mRθu(s) ds =
∫
R s

m
∫
θ⊥
u(sθ + y) dHd−1(y) ds =

∫
Rd(x · θ)mu(x) dx

is homogeneous polynomial in θ∫
θ⊥

(x · y)mPθu(x) dHd−1(x) =
∫
θ⊥

(x · y)m
∫
R u(x+ tθ) dtdHd−1(x) =

∫
Rd(z · y)mu(z) dz

is homogeneous polynomial in y, independent of θ

Note that all pm might be zero even if u 6= 0 (e. g. Rθu(s) = f(θ)h(s) for f, h from remark 211 later).

Theorem 208 (Range of Radon transform). Let v ∈ S(C) with v(θ, s) = v(−θ,−s) and the Helgason–
Ludwig condition ∫

R
smv(θ, s) ds = pm(θ)

for m-homogeneous polynomials pm, m ∈ N0. Then there exists u ∈ S(Rd) with v = Ru.

Proof. Define u via û(ξ) = (2π)(1−d)/2v̂( ξ
|ξ| , |ξ|).

Suffices to show û ∈ S(Rd), then Ru = v by Fourier slice theorem.
û has derivatives up to an arbitrary order q (already clear for ξ 6= 0):

• eit =
∑q
m=0

(it)m

m! + eq(t) with eq(t) =
∑∞
m=q+1

(it)m

m!

• û(ξ) = (2π)−d/2
∫
R
e−is|ξ|v( ξ

|ξ| , s) ds

= (2π)−d/2

(
q∑

m=0

(−i|ξ|)m

m!

∫
R
smv( ξ

|ξ| , s) ds+

∫
R
eq(−|ξ|s)v( ξ

|ξ| , s) ds

)

= (2π)−d/2

(
q∑

m=0

(−i)mpm(ξ)

m!
+

∫
R
eq(−|ξ|s)v( ξ

|ξ| , s) ds

)

• Dα
ξ

(
eq(−|ξ|s)v( ξ

|ξ| ,s)
)

is Schwartz in s and continuous & unif. bdd. in ξ∈B1(0)\{0} for any |α|≤q+1:

– sufficient to show: Dα
ξ

(
eq(−|ξ|s)v( ξ

|ξ| ,s)
)

is finite linear combination of terms

|ξ|q+1−|α|a(|ξ|s)h( ξ
|ξ| , s)

with h ∈ S(C) and a ∈ C∞(R) s. t. a(n) grows at most polynomially for any n ∈ N0

– induction basis (|α| = 0): take h(θ, s) = sq+1v(θ, s) and a(t) = eq(−t)/tq+1

– induction step: for |α| ≤ q assume claim holds; differentiate one of the terms,

∇ξ(|ξ|q+1−|α|a(|ξ|s)h( ξ
|ξ| , s)) = |ξ|q−|α|a(|ξ|s)

[
ξ
|ξ|h( ξ

|ξ| , s)
]

+ |ξ|q−|α| [(|ξ|s)a′(|ξ|s)]
[
ξ
|ξ|h( ξ

|ξ| , s)
]

+ |ξ|q−|α|a(|ξ|s)
[(
I − ξ

|ξ| ⊗
ξ
|ξ|

)
∇θh( ξ

|ξ| , s)
]

⇒ also next higher derivatives are linear combinations of terms with required properties

• For any |α| = q, Dα
ξ û(ξ) can be continuously extended to ξ = 0:

– ∇ξDα
ξ û is bounded and continuous on B1(0) \ {0} by previous point

Dα
ξ û(ξ) decays faster than any power of |ξ|:

• sup|ξ|>1 |ξβDα
ξ û(ξ)| = (2π)(1−d)/2 sup|ξ|>1 |ξβDα

ξ v̂( ξ
|ξ| , |ξ|)| <∞ since v is Schwartz

Remark 209 (Helgason–Ludwig conditions). If one considers non-Schwartz functions v : C → R, it is
known that the Helgason–Ludwig conditions on v determine the decay of R−1v (see Madych & Solmon:
A range theorem for the Radon transform, 1988). Roughly, if the conditions hold for m = 0, . . . , k,
then (under additional smoothness conditions) v = Ru for some function u which decays at least like
|x|−d−k−1. This is quite natural: The necessity of the Helgason–Ludwig conditions followed from the
identity

∫
R s

mRθu(s) ds =
∫
Rd(x · θ)mu(x) dx, whose right-hand side is only well-defined if u decays fast

enough (faster than |x|−d−k).
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Theorem 210 (Range of X-ray transform). Let w ∈ S(C′) with w(θ, s) = 0 for |s| ≥ R and the
Helgason–Ludwig condition∫

θ⊥
(x · y)mw(θ, x) dHd−1(x) = qm(y) ∀θ ∈ Sd−1, y ∈ θ⊥

for m-homogeneous polynomials qm, m ∈ N0. Then there exists u ∈ S(Rd) with w = Pu.

Proof. With ϕ ∈ Sd−1 ∩ θ⊥ we can compute the Radon transform v from the X-ray transform w via

v(θ, s) =

∫
{x∈ϕ⊥ | x·θ=s}

w(ϕ, x) dHd−2(x).

• v = Ru for some u ∈ S(Rd) with support in the R-ball:

–
∫
R s

mv(θ, s) ds =
∫
R s

m
∫
{x∈ϕ⊥ | x·θ=s} w(ϕ, x) dHd−2(x) ds =

∫
ϕ⊥

(x · θ)mw(ϕ, x) dx = qm(θ)

– v(θ, s) = 0 for |s| ≥ R theorem 223 later⇒ u has support in R-ball

• v does not depend on ϕ:

– polynomials are dense on L2((−R,R))

– ⇒ v(θ, ·) uniquely specified by q0, q1, . . .

• w = Pu, since integrals of w and Pu over arbitrary hyperplanes in θ⊥ coincide:

– pick hyperplane H = {x ∈ θ⊥ |x · ϕ = s} for arbitrary s ∈ R, ϕ ∈ Sd−1 ∩ θ⊥, then∫
H

w(θ, x) dHd−2(x) = v(ϕ, s) = Ru(ϕ, s)∫
H

Pu(θ, x) dHd−2(x) =

∫
H

∫
R
u(x+ tθ) dtdHd−2(x)

=

∫
θ⊥∩ϕ⊥

∫
R
u(sϕ+ y + tθ) dtdHd−2(y)

=

∫
ϕ⊥

u(sϕ+ x) dHd−1(x)

= Ru(ϕ, s)

– Thus Radon transforms of w and Ru within θ⊥ coincide, but Radon transform is injective.

Remark 211 (Noncompact support). If d > 2, the support condition w(θ, s) = 0 for |s| ≥ R cannot
be dropped (for d = 2 it can since R and P and their moment conditions are equivalent). Indeed, there
exists a nonzero even h ∈ S(R) with∫ ∞

0

smh(s) ds = 0 for all m ∈ N0.

If w(θ, s) = f(θ)h(|s|) for some f ∈ C∞(Sd−1) with f(−θ) = f(θ), the Helgason–Ludwig condition is
satisfied due to∫

θ⊥
(s · y)mw(θ, s) dHd−1(s) = f(θ)

∫
θ⊥

(s · y)mh(|s|) dHd−1(s)

= f(θ)

∫
Sd−1∩θ⊥

(ϕ · y)m dHd−2(ϕ)

∫ ∞
0

rd−2+mh(r) dr = 0.

If w = Pu for some u ∈ S(Rd), then for ϕ ∈ Sd−1 ∩ θ⊥

Ru(ϕ, s) =

∫
{x∈θ⊥ | x·ϕ=s}

w(θ, x) dHd−2(x) = f(θ)

∫
{x∈θ⊥ | x·ϕ=s}

h(|x|) dHd−2(x)︸ ︷︷ ︸
function solely of s, since integrand only depends on |x|

,

a contradiction unless f =const.
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Remark 212 (Continuous inverse on Schwartz space). The range ranR ⊂ S(C) of R : S(Rd) → S(C)
is closed: If vn → v ∈ S(C) with vn satisfying point symmetry and the Helgason–Ludwig conditions with
polynomials pnm, then also v satisfies point symmetry and the Helgason–Ludwig conditions with pm being
the uniform limit of the pnm (which again must be an m-homogeneous polynomial). Thus by the open
mapping theorem (which also holds on Fréchet spaces), R is an open map from S(Rd) onto its range.
Since by the Fourier slice theorem R is also injective on S(Rd), it follows that R has a continuous inverse
R−1 : ranR→ S(Rd) – one does not see ill-posedness on the level of Schwartz functions!
Similarly, the range of P : S(Ω)→ S(C′) is closed (where S(Ω) are the Schwartz functions with support
in the compact Ω ⊂ Rd) and P has a continuous inverse.

22 Fractional Hilbert spaces lecture 25

Definition 213 (Fractional Hilbert space). For γ ∈ R the (fractional) Hilbert space Hγ(Rd) is defined
as

Hγ(Rd) = {u ∈ S ′(Rd) | ‖u‖Hγ(Rd) <∞} with norm ‖u‖Hγ(Rd) =

(∫
Rd
|û(ξ)|2(1 + |ξ|2)γ dξ

)1/2

.

Similarly we define Hγ(Sd−1 × Rn) = {u ∈ S ′(Sd−1 × Rn) | ‖u‖Hγ(Sd−1×Rn) <∞} with norm

‖u‖Hγ(Sd−1×Rn) =

(∫
Sd−1

∫
Rn
|û(θ, ξ)|2(1 + |ξ|2)γ dξ dθ

)1/2

,

where the Fourier transform is with respect to the second argument of u.
For Ω ⊂ Rd open and bounded, the completion of {u ∈ S(Rd) |u = 0 outside Ω} with respect to ‖·‖Hγ(Rd)

is
Hγ

0 (Ω) = {u ∈ Hγ(Rd) | sptu ⊂ Ω}.

Hγ
0 (Sd−1 × Ω) for Ω ⊂ Rn open and bounded is defined analogously.

Remark 214 (Identification with periodic functions). If Ω = (−π, π)d and γ ≥ 0, then any u ∈ Hγ
0 (Ω) ⊂

H0
0 (Ω) = L2(Ω) can be interpreted as (a periodic) L2-function on Ω. An orthonormal basis of L2(Ω) is

given by (bk)k∈Zd with bk(x) = (2π)−d/2eik·x. Therefore we can decompose u into its Fourier series

u(x) =
∑
k∈Zd

ûkbk(x) = (2π)−d/2
∑
k∈Zd

ûke
ik·x with ûk = (u, bk)L2(Ω) = (2π)−d/2

∫
Ω

u(x)e−ik·x dx

(it is always clear from the context whether û refers to the Fourier transform or the Fourier series
coefficients). It turns out that the norms ‖u‖Hγ0 (Ω) and

‖u‖Hγper(Ω) =

∑
k∈Zd

(1 + |k|2)γ |ûk|2
1/2

are equivalent on Hγ
0 (Ω), where Hγ

per(Ω) is the completion of infinitely smooth periodic functions on
Ω with respect to ‖ · ‖Hγper(Ω). This is usually proved by interpreting Hγ

0 (Ω) as interpolation between

H
bγc
0 (Ω) and H

dγe
0 (Ω) and the analogous for Hγ

per(Ω) (see Lemma VII.4.4 and references in Natterer,
Mathematical Methods of Computerized Tomography, 2001). For other periodic domains an analogous
statement holds true.

Theorem 215 (Properties of fractional Hilbert spaces). Let γ, β ∈ R, Ω ⊂ Rd open and bounded.

1. For γ ∈ N0 the fractional Hilbert spaces Hγ(Rd) and Hγ
0 (Ω) coincide with their usual notion, and

the corresponding norms are equivalent.

2. u 7→ uβ−γ with ûβ−γ(ξ) = û(ξ)(1 + |ξ|2)(β−γ)/2 is an isometric isomorphism Hβ(Rd)→ Hγ(Rd).

3. Hγ(Rd) is a Hilbert space.
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4. Its norm is shift-invariant.

5. (Hγ(Rd))∗ = H−γ(Rd) with dual pairing 〈u, v〉 =
∫
Rd ûv̂ dξ;

furthermore (Hγ
0 (Ω))∗ ⊂ H−γ0 (Ω) if γ ≥ 0 (opposite inclusion for γ ≤ 0 by reflexivity).

6. ‖ · ‖Hγ > ‖ · ‖Hβ for γ > β and Hγ(Rd) ( Hβ(Rd), Hγ
0 (Ω) ( Hβ

0 (Ω).

7. Hγ
0 (Ω) embeds compactly into Hβ

0 (Ω) for γ > β.

Proof. 1.
∑
|α|≤n

∫
Rd
|Dαu|2 dx =

∑
|α|≤n

∫
Rd
|ξαû(ξ)|2 dξ

{
≤
∫
Rd(1 + |ξ|2)n|û(ξ)|2 dξ

≥ const.
∫
Rd(1 + |ξ|2)n|û(ξ)|2 dξ

2. straightforward

3. inner product (u, v)Hγ =
∫
Rd û(ξ)v̂(ξ)(1 + |ξ|2)γ dξ

Cauchy sequence un ∈ Hγ induces Cauchy sequence uγn in L2;
convergence of the latter to u in L2 implies convergence of the former to u−γ in Hγ

4. straightforward

5. By 2., there is a one-to-one correspondence between `∈(Hγ(Rd))∗ and l∈(L2(Rd))∗=L2(Rd)
via `(u) = l(uγ) =

∫
Rd l̂û

γ dξ =
∫
Rd l̂

γ ûdξ = 〈lγ , u〉, where lγ ∈ H−γ(Rd).

6. straightforward

7. Let un ⇀ u in Hγ
0 (Ω); need to show un → u in Hβ

0 (Ω).

Wlog. β ≥ 0.

• if β < 0 set m = 2d−β/2e ∈ N0

• let χ ∈ C∞c (Rd) with χ = 1 on a neighbourhood of Ω, χ = 0 outside Ω̃ ⊃ Ω

• un ⇀ u in Hγ
0 (Ω)⇒ u−mn ⇀ u−m in Hγ+m(Rd)⇒ χu−mn ⇀ χu−m in Hγ+m

0 (Ω̃) ⊂ Hγ+m(Rd)
• (χ(u−mn −u−m))m = (id−∆)m/2(χ(u−mn −u−m)) = (id−∆)m/2(u−mn −u−m) = un−u on Ω.

• if χu−mn → χu−m in Hβ+m
0 (Ω̃), then

‖un − u‖Hβ0 (Ω) = sup
‖v‖

H−β≤1,spt v⊂Ω

〈v, (χ(u−mn − u−m))m〉

≤ sup
‖v‖

H−β≤1

〈v, (χ(u−mn − u−m))m〉

= sup
‖v‖

H−β−m≤1

〈v, χ(u−mn − u−m)〉 → 0

Wlog. Ω = (−π, π)d.

• by shifting and rescaling coordinates we achieve Ω ⊂ (−π, π)d without changing convergences

• (Hγ
0 ((−π, π)d))∗ ⊂ (Hγ

0 (Ω))∗; thus un ⇀ u in Hγ
0 ((−π, π)d)

• Hβ
0 (Ω) is a closed subset of Hβ

0 ((−π, π)d);

hence, un → u in Hβ
0 ((−π, π)d) implies un → u in Hβ

0 (Ω)

un ⇀ u in Hγ
0 (Ω) ⇒ (ûn)k → ûk for all k ∈ Zd.

• γ ≥ 0 ⇒ un ⇀ u in L2(Ω)

• (un − u, bk)L2(Ω) = ((ûn)k − ûk)

un → u in Hβ
0 (Ω).

• abbreviate M = max{‖u‖Hγper(Ω), supn ‖un‖Hγper(Ω)} and fix an arbitrary ε > 0

• let R2 > (8M2/ε)
1

γ−β − 1
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• let N > 0 large enough such that
∑
k∈Zd,|k|≤R(1 + |k|2)β |(ûn)k − ûk|2 ≤ ε

2 for all n > N

• ‖un − u‖2Hβper(Ω)
=

∑
k∈Zd,|k|≤R

(1 + |k|2)β |(ûn)k − ûk|2 +
∑

k∈Zd,|k|>R

(1 + |k|2)β |(ûn)k − ûk|2

≤ ε

2
+ 2

∑
k∈Zd,|k|>R

(1 + |k|2)β(|(ûn)k|2 + |ûk|2)

≤ ε

2
+ 2(1 +R2)β−γ2M2

≤ ε

Remark 216 (Dirac measure). We have δx ∈ H−γ(Rd) if and only if γ > d
2 (homework). Similarly,

γ > d
2 is equivalent to point evaluation at x being a continuous linear operator on Hγ(Rd) (homework).

Now let γ > d
2 and x ∈ ∂Ω for a bounded open Ω ⊂ Rd, then δx ∈ H−γ0 (Ω), but u(x) = 0 for any

u ∈ Hγ
0 (Ω) so that (H−γ0 (Ω))∗ 6⊂ Hγ

0 (Ω).

Remark 217 (Compact embedding versus shift-invariance). The embedding Hγ(Rd) ↪→ Hβ(Rd) is never
compact due to the shift-invariance of Hγ(Rd) and Hβ(Rd) (cf. theorem 42).

lecture 26To understand later the degree of ill-posedness of the Radon and X-ray transform we now aim to derive
how the singular values of the compact embedding Hγ

0 (Ω) ↪→ Hβ
0 (Ω) decay.

Theorem 218 (Courant–Fisher–Weyl min-max principle). Let X,Y be Hilbert spaces, K : X → Y
linear and compact. The kth singular value ρk of K equals the numbers

Ck := max {inf{‖Kx‖Y |x ∈ S, ‖x‖X ≥ 1} |S ⊂ X is k-dimensional subspace} ,
Dk := min

{
sup{‖Kx‖Y |x ∈ S⊥, ‖x‖X ≤ 1}

∣∣S ⊂ X is (k − 1)-dimensional subspace
}
.

Proof. • Kx =
∑∞
n=1 ρn(x, un)Xvn for orthonormal left & right singular vectors un ∈ X, vn ∈ Y

• take S = span{u1, . . . , uk}, then

Ck ≥ inf{‖Kx‖Y |x ∈ span{u1, . . . , uk}, ‖x‖X ≥ 1}

= inf

{(∑k
n=1 ρ

2
n(x, un)2

X

)1/2
∣∣∣∣x ∈ span{u1, . . . , uk}, ‖x‖X ≥ 1

}
= ρk

• consider arbitrary k-dimensional subspace S ⊂ X;
there exists some x ∈ span{u1, . . . , uk−1}⊥ ∩ S (k unknowns, k − 1 equations); set v = x/‖x‖X ;
⇒ ‖Kv‖2Y =

∑∞
n=k ρ

2
n(v, un)2

X ≤ ρ2
k

∑∞
n=k(v, un)2

X = ρ2
k

⇒ Ck ≤ max {ρk |S ⊂ X is k-dimensional subspace} = ρk

• analogous argument for Dk

Theorem 219 (Singular values of composition). Let W,X, Y, Z be Hilbert spaces, K : X → Y linear
and compact with singular values (σk)k∈N0

, and J : W → X as well as L : Y → Z linear and bounded.
Then the singular values (λk)k∈N0

of LKJ satisfy

λk ≤ ‖L‖‖J‖σk.

If L and J are bijective, then also
λk ≥ 1

‖L−1‖‖J−1‖σk.

Proof. For any w ∈W and S ⊂W we have

‖LKJw‖Z ≤ ‖L‖‖KJw‖Y ,
{x ∈ X |x ∈ JS, ‖x‖X ≥ ‖J‖} = {Jw ∈ X |w ∈ S, ‖Jw‖X ≥ ‖J‖} ⊂ {Jw ∈ X |w ∈ S, ‖w‖W ≥ 1}.
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Therefore

λk = max {inf{‖LKJw‖Z |w ∈ S, ‖w‖W ≥ 1} |S ⊂W is k-dimensional subspace}
≤ ‖L‖max {inf{‖KJw‖Y |w ∈ S, ‖w‖W ≥ 1} |S ⊂W is k-dimensional subspace}
= ‖L‖max {inf{‖KJw‖Y |w ∈ S, ‖w‖W ≥ 1} |S ⊂W is k-dimensional subspace, J injective on S}
= ‖L‖max {inf{‖Kx‖Y |x ∈ JS, ‖x‖X ≥ ‖J‖} |S ⊂W is k-dimensional subspace, J injective on S}
= ‖L‖max {inf{‖Kx‖Y |x ∈ JS, ‖x‖X ≥ ‖J‖} |JS ⊂ X is k-dimensional subspace}

≤ ‖L‖‖J‖max
{

inf{‖Kx‖Y |x ∈ S̃, ‖x‖X ≥ 1}
∣∣∣ S̃ ⊂ X is k-dimensional subspace

}
= ‖L‖‖J‖σk.

Now let L, J both have bounded inverse, then

‖KJw‖Y = ‖L−1LKJw‖Y ≤ ‖L−1‖‖LKJw‖Z ,
{Jw |w ∈ S, ‖w‖W ≥ 1} = {x |x ∈ JS, ‖J−1x‖W ≥ 1} ⊂ {x |x ∈ JS, ‖x‖X ≥ 1

‖J−1‖}.

Therefore

λk = max {inf{‖LKJw‖Z |w ∈ S, ‖w‖W ≥ 1} |S ⊂W is k-dimensional subspace}
≥ 1
‖L−1‖ max {inf{‖KJw‖Y |w ∈ S, ‖w‖W ≥ 1} |S ⊂W is k-dimensional subspace}

≥ 1
‖L−1‖ max

{
inf{‖Kx‖Y |x ∈ JS, ‖x‖X ≥ 1

‖J−1‖}
∣∣∣S ⊂W is k-dimensional subspace

}
= 1
‖L−1‖‖J−1‖ max

{
inf{‖Kx‖Y |x ∈ S̃, ‖x‖X ≥ 1}

∣∣∣ S̃ ⊂ X is k-dimensional subspace
}

= 1
‖L−1‖‖J−1‖σk.

Theorem 220 (SVD of Hγ-embedding). Let γ > β ≥ 0 and Ω ⊂ Rd open and bounded, then the singular

values σk of the embedding ι : Hγ
0 (Ω) ↪→ Hβ

0 (Ω) decay like σk ∼ k
β−γ
d .

Proof. First consider Ω = (−π, π)d.

1. The singular values λk of Hγ
per(Ω) ↪→ Hβ

per(Ω) decay like λk ∼ k
β−γ
d :

• (vαn)n∈Zd with (v̂αn)n = (1 + |n|2)−α/2 and (v̂αn)k = 0 else forms orthonormal basis of Hα
per(Ω)

• vγn = (1 + |n|2)
β−γ

2 vβn, hence singular values are (1 + |n|2)
β−γ

2

• kth singular value corresponds to nk ∈ Zd with kth smallest norm, thus k ∼ |nk|d

• λk = (1 + |nk|2)
β−γ

2 ∼ k
β−γ
d

2. The Hα
per(Ω)-orthogonal projection Pα : Hα

per(Ω)→ Hα
0 (Ω) for α ≥ 0 is well-posed:

• Hα
0 (Ω) ⊂ Hα

per(Ω)

• Hα
0 (Ω)=completion of Schwartz functions with support in Ω wrt. ‖·‖Hα0 (Ω), thus wrt. ‖·‖Hαper(Ω)

• ⇒ Hα
0 (Ω) is closed subset of Hα

per(Ω)

3. σk decay at least like σk . k
β−γ
d :

• let ια0,per : Hα
0 (Ω) ↪→ Hα

per(Ω) and ιper : Hγ
per(Ω) ↪→ Hβ

per(Ω)

• ι = Pβ ◦ ιper ◦ ιγ0,per

• ιγ0,per and Pβ are bounded; now use theorem 219 to obtain σk . λk

4. σk decay at most like σk & k
β−γ
d :

• let Eα : Hα
per(Ω)→ Hα

per(Ω) be given by (Êαu)2k = ûk and (Êαu)k = 0 else;
then ‖Eα‖ ≤ 2α and Eαu(x) = u(2x) (assuming u on rhs is periodically extended)
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• let χ ∈ C∞c (Ω) with χ = 1 on a neighbourhood of Ω/2 and Fα : Hα
per(Ω)→ Hα

0 (Ω), Fαu = χu;
Fα is bounded (which can be seen using the norm ‖ · ‖Hαper(Ω) on domain and codomain,

since F̂αu = χ̂ ∗ û, where χ̂k decays faster than any power of |k|)
• X = ran (F βEβ) is closed in Hβ

per(Ω):

let un∈X with un→u in Hβ
per(Ω),

then also un→u in L2(Ω) and thus pointwise a. e. along a subsequence
v∈X ⇔ v∈Hβ

per(Ω) & pointwise condition v(x) = χ(x)v(x/2) if x ∈ Ω \ Ω
2

• X ⊂ Hβ
per(Ω) closed

⇒ orthogonal projection P : Hβ
per(Ω)→ X is well-defined,

⇒ (F βEβ) has bounded inverse T : X → Hβ
per(Ω) by injectivity and bounded inverse theorem

⇒ by Hahn–Banach, T can be extended to a bounded linear operator T : Hβ
per(Ω)→ Hβ

per(Ω)

• ιper = T ◦ P ◦ ιβ0,per ◦ ι ◦ F γ ◦ Eγ ; now use theorem 219 to obtain λk . σk

For an arbitrary domain Ω let Ω̄ = (−π, π)d and G, J be domain translations and rescalings such that

GΩ ⊂⊂ Ω̄ and JΩ̄ ⊂⊂ Ω,

and let ῑ be the embedding Hγ
0 (Ω̄) ↪→ Hβ

0 (Ω̄), then

ι : Hγ
0 (Ω)

bounded ◦G−−−−−−−−→ Hγ
0 (GΩ) ↪→ Hγ

0 (Ω̄)
ῑ
↪→ Hβ

0 (Ω̄)
orth. proj.−−−−−−→ Hβ

0 (GΩ)
bounded ◦G−1

−−−−−−−−−→ Hβ
0 (Ω)

ῑ : Hγ
0 (Ω̄)

bounded ◦J−1

−−−−−−−−−→ Hγ
0 (J−1Ω̄) ↪→ Hγ

0 (Ω)
ι
↪→ Hβ

0 (Ω)
orth. proj.−−−−−−→ Hβ

0 (J−1Ω̄)
bounded ◦J−−−−−−−→ Hβ

0 (Ω̄)

so that the singular values of ι and ῑ decay at the same rate.

Remark 221 (Embedding for negative β). Let 0 ≤ β ≤ γ. The adjoint of the embedding Hγ
0 (Ω) ↪→

Hβ
0 (Ω) is the embedding (Hβ

0 (Ω))∗ ↪→ (Hγ
0 (Ω))∗, so its singular values also decay at the same rate.

Exploiting the embeddings H−α0 (Ω) ⊂ (Hα
0 (Ω))∗ ⊂ H−α0 (Ω) for Ω ⊂⊂ Ω ⊂⊂ Ω, as in the previous proof

one obtains the decay rate k
β−γ
d even for Hγ

0 (Ω) ↪→ Hβ
0 (Ω) with arbitrary γ > β.

23 Radon and X-ray transform on bounded domains lecture 27

Remarks 205 and 206 depended on the unbounded domain. On a bounded domain things get simpler.
Below we identify a pair (θ, s) ∈ C with the hyperplane sθ+θ⊥ and a pair (θ, s) ∈ C′ with the line s+θR.

Lemma 222 (Support of integral transforms). If u is compactly supported, then so are Ru and Pu (they
only have support on hyperplanes or lines (θ, s) that intersect the support of u).

Proof. trivial

The reverse holds true as well (which in case of nonnegative u is trivial). It can be shown using Cormack’s
original inversion formula for the Radon transform (which we will not derive).

Theorem 223 (Support of inverse integral transforms). Let u ∈ S(Rd) and Ω ⊂ Rd be convex and
compact.

1. If Ru(θ, s) = 0 for every hyperplane (θ, s) not intersecting Ω, then u = 0 on Rd \ Ω.

2. If Pu(θ, s) = 0 for every line (θ, s) not intersecting Ω, then u = 0 on Rd \ Ω.

Proof. 1. Suffices to consider balls Ω, since for any x /∈ Ω there is a ball containing Ω, but not x.
By coordinate transform suffices to consider Ω to be the unit ball.
Cormack’s inversion formula shows Ru = 0 on Sd−1 × (R \ [−1, 1]) ⇒ u = 0 outside unit ball.
2. Follows from 1. since each hyperplane not intersecting Ω is spanned by lines not intersecting Ω.

Theorem 224 (Sobolev estimates for Radon and X-ray transform). Let Ω ⊂ Rd be bounded and open
and γ ∈ R. There exist constants c, C > 0, depending only on γ, d, and Ω such that

c‖u‖Hγ0 (Ω) ≤ ‖Ru‖
Hγ+

d−1
2 (C)

, ‖Pu‖
Hγ+

1
2 (C′)

≤ C‖u‖Hγ0 (Ω) for all u ∈ C∞0 (Ω).
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Proof. 1. ‖Ru‖2
Hγ+

d−1
2 (C)

=

∫
Sd−1

∫
R

(1 + σ2)γ+ d−1
2 |R̂θu(σ)|2 dσ dHd−1(θ)

= (2π)d−1

∫
Sd−1

∫
R

(1 + σ2)γ+ d−1
2 |û(σθ)|2 dσ dHd−1(θ)

= 2(2π)d−1

∫
Sd−1

∫ ∞
0

(1 + σ2)γ+ d−1
2 |û(σθ)|2 dσ dHd−1(θ)

= 2(2π)d−1

∫
Rd

(1 + |ξ|2)γ+ d−1
2 |û(ξ)|2|ξ|1−d dξ

• ‖Ru‖2
Hγ+

d−1
2 (C)

≥ 2(2π)d−1
∫
Rd(1 + |ξ|2)γ |û(ξ)|2 dξ = 2(2π)d−1‖u‖2Hγ(Rd)

•
‖Ru‖2

H
γ+ d−1

2 (C)
2(2π)d−1 =

∫
{|ξ|≤1}

(1 + |ξ|2)γ+ d−1
2 |û(ξ)|2︸ ︷︷ ︸
≤‖û‖2

L∞({|ξ|≤1})

|ξ|1−d dξ

︸ ︷︷ ︸
≤const.‖û‖2

L∞({|ξ|≤1})

+

∫
{|ξ|>1}

(1 + |ξ|2)γ+ d−1
2 |û(ξ)|2 |ξ|1−d︸ ︷︷ ︸

≤(
1+|ξ|2

2 )
1−d
2

dξ

︸ ︷︷ ︸
≤2

d−1
2 ‖u‖2

Hγ (Rd)

• let χ ∈ C∞0 (Rd) be one on Ω, and set χξ(x) = e−ix·ξχ(x), then

(2π)d/2|û(ξ)| =
∣∣∣∣∫

Rd
χξ(x)u(x) dx

∣∣∣∣ =

∣∣∣∣∫
Rd
χ̌ξ(η)û(η) dη

∣∣∣∣
≤
(∫

Rd

1

(1 + |η|2)γ
|χ̌ξ(η)|2 dη

) 1
2
(∫

Rd
(1 + |η|2)γ |û(η)|2 dη

) 1
2

= ‖χξ‖H−γ(Rd)‖u‖Hγ(Rd)

• ‖χξ‖H−γ(Rd) depends continuously on ξ, thus the supremum over |ξ| ≤ 1 is bounded

2. ‖Pu‖2
Hγ+

1
2 (C′)

=

∫
Sd−1

∫
θ⊥

(1 + |ξ|2)γ+ 1
2 |P̂θu(ξ)|2 dHd−1(ξ) dHd−1(θ)

= 2π

∫
Sd−1

∫
θ⊥

(1 + |ξ|2)γ+ 1
2 |û(ξ)|2 dHd−1(ξ) dHd−1(θ)

= 2πHd−2(Sd−2)

∫
Rd

(1 + |η|2)γ+ 1
2 |û(η)|2|η|−1 dη

(using lemma 200 in last step); rest analogous to Radon transform

Remark 225 (Compactness of transforms). We see that on a bounded domain Ω, not only is R
(analogously P ) bounded from L2(Ω) = H0

0 (Ω) into L2(C), but even compact: It is the composition

of the compact embedding H0
0 (Ω) ↪→ H

− d−1
2

0 (Ω) with the bounded R : H
− d−1

2
0 (Ω) → L2(Ω). (Note that

H
d−1
2

0 (Sd−1× [a, b]) does not embed compactly into L2(C) since it has no additional regularity along Sd−1,
but one can show that the subspace satisfying the Helgason–Ludwig conditions does; in other words, R is

continuous from Hγ
0 (Ω) into an even more regular space than Hγ+ d−1

2 (C) – one with additional regularity
along Sd−1.)

Remark 226 (Ill-posedness). Obviously, inversion of R (analogously for P ) is well-posed if R is inter-

preted as an operator from L2(Ω) to H
d−1
2 (C). However, typically the measurement error lies in L2(C)

or is even less regular (for instance, Gaussian white noise is in H−γ(Rd) if and only if γ > 1
2), and we

often require the reconstruction to have small errors in L2(Ω) or even H1
0 (Ω). Thus we need to interpret

R as an operator from L2(Ω) or H1
0 (Ω) into L2(C) or H−γ(C), which is compact.

Corollary 227 (Mild ill-posedness). Let β ≤ γ. The singular values of R : Hγ
0 (Ω)→ Hβ(C) decay like

σk ∼ k
β−γ
d −

d−1
2d , the singular values of P : Hγ

0 (Ω) → Hβ(C′) like σk ∼ k
β−γ
d −

1
2d , so inversion of both is

(very) mildly ill-posed.
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Proof. Interpret R as composition

Hγ
0 (Ω)

ι (compact embedding)−−−−−−−−−−−−−−→ H
β+ 1−d

2
0 (Ω)

R (boundedly invertible on its range)−−−−−−−−−−−−−−−−−−−−−−−→ Hβ(C),

and apply theorem 219 and remark 221. Analogous argument for P .

In fact, explicit singular value decompositions for the Radon transform between multiple different spaces
are known, for instance between weighted L2-spaces on bounded domains.

56


