
Introduction
  - Overview of 2. order PDEs
    (classification, classical model problems)
  - Overview of most important discretization concepts
    (finite differences, finite elements, finite volumes)

Finite Differences
  - Exm. heat equation
    (stability concepts, convergence)
  - Exm. transport equation
    (stability, convergence, dissipation)

Finite Elements
  - Exm. Poisson equation
    (matrix assembly, a priori error estimates)
  - Adaptivity
    (grid refinement, a posteriori error estimates)

Numerics for partial differential equations
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  Elliptic PDEs: energy minimization
Introduction: PDEs of 2. order

Elliptic PDEs often derive from the physical principle of energy minimization:

A physical system in equilibrium attains the state of minimal energy.



  Parabolic PDEs: gradient flows
Introduction: PDEs of 2. order

A physical system first has to equilibrate, to get to the energy minimum.

Parabolic PDEs derive from the physical principle of gradient flows:

At any time point, the state moves into the direction which allows the fastest

energy decrease (at same effort/cost).



  Hyperbolic PDEs: conservation laws
Introduction: PDEs of 2. order

Hyperbolic PDEs often derive from the physical principle of conservation:

The change of an extensive quantity (e.g. mass, momentum, energy) in a

volume V is only possible via transport through ðV.



  Reduction of hyperbolic PDEs from 2. to 1. order in 2D
Introduction: PDEs of 2. order

= system of coupled transport equations of 1. order

If f only depends on x&t, one can first solve

and then

=> we will only consider hyperbolic PDEs of 1. order!
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  Perspective: nonlinear PDEs
Finite Differences: parabolic PDEs (2D heat equation)

For nonlinear PDEs the stability of the method is often difficult to show.



  Perspective: nonlinear PDEs
Finite Differences: parabolic PDEs (2D heat equation)

Such boundedness results allow to reduce everything to the linear case.

Convergence now follows from consistency and stability as before.



  Example nonlinear PDE
Finite Differences: parabolic PDEs (2D heat equation)



  Upwind-method
Finite differences: hyperbolic PDEs (1D transport equation)



  Example simulation
Finite differences: hyperbolic PDEs (1D transport equation)



  Lebesgue-spaces
Finite differences: hyperbolic PDEs (1D transport equation)



  Lp-stability
Finite differences: hyperbolic PDEs (1D transport equation)



  l2-stability
Finite differences: hyperbolic PDEs (1D transport equation)



  l -stability
Finite differences: hyperbolic PDEs (1D transport equation)



  Domain of Dependence
Finite differences: hyperbolic PDEs (1D transport equation)



  Convergence (concistency + stability)
Finite differences: hyperbolic PDEs (1D transport equation)



  Methods of higher order consistency
Finite differences: hyperbolic PDEs (1D transport equation)



  l2-stability
Finite differences: hyperbolic PDEs (1D transport equation)



  Example simulation
Finite differences: hyperbolic PDEs (1D transport equation)



  Numerical dissipation
Finite differences: hyperbolic PDEs (1D transport equation)



  Perspective: 2D and nonlinearity
Finite differences: hyperbolic PDEs (1D transport equation)
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Poisson equation with homogeneous Dirichlet boundary conditions: 

We had interpreted this as necessary condition for the fact that u minimizes

among all functions In detail:
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Similar statements hold for piecewise smooth boundary such that no two neighbouring pieces have Neumann boundary conditions
(see e.g. Bacuta, Mazzucato, Nistor, Zikatanov: Interface and mixed boundary value problems on n-dimensional polyhedral domains)
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A classical example of a nonlinear elliptic PDE comes from the description of the deformation

of elastic (material) bodies.

- In the undeformed, stress-free state the elastic body occupies a sufficiently smooth, open,

  bounded, connected domain Ω⊂IR³. This is called the reference configuration.

- The new position of a point x∈Ω after the deformation is denoted y(x). y:Ω→IR³ is called

  the deformation, F=Dy:Ω→IR³'³ is called the deformation gradient.

Def:

force

- The coordinate x∈Ω is called Lagrangean coordinate, i.e. every considered quantity

  (material density, elastic forces, etc.) at a position y(x) in the deformed material is

  represented as a function of the original position x of the material point.

- The representation of considered quantities as a function of the new position y(x) is

  called representation in Eulerian coordinates.
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