
Institut für Numerische und Angewandte Mathematik 02.12.2019
FB Mathematik und Informatik der Universität Münster
Prof. Dr. Christian Engwer, MSc Marcel Koch

Übung zur Vorlesung
Wissenschaftliches Rechnen

WS 2019/20 — Blatt 8

Abgabe: 09.12.2019, 10:00 Uhr Aufgabe 1-3, Briefkasten 112
06.01.2020. 10:00 Uhr Aufgabe 4
Code zusätzlich per e-mail an marcel.koch@uni-muenster.de

Achtung: Achten Sie darauf, Ihre Programme ordentlich zu formatieren und gut zu kommen-
tieren. Die Form wird mit in die Bewertung eingehen.

Aufgabe 1 (Multikative Schwarz-Methode) (4 Punkte)

Sei I die Indexmenge aller innerer Knoten und Ii := {i} eine nicht-überlappende Zerlegung
von I, so dass jede Indexmenge genau einen Knoten enthält. Zeigen Sie, dass die multiplikative
Schwarz-Methode angewandt auf diese Zerlegung äquivalent ist zu der Gauß-Seidel Iteration

xk+1 = xk + W −1(b−Axk),

mit der additiven Zerlegung von A = L + D + U und W = D + L.
Verallgemeinern Sie dieses Ergebnis auf den Fall Ii ∩ Ij = ∅ ∀i 6= j, um zu zeigen, dass in dem
Fall die multiplikative Schwarz-Methode äquivalent zu einer Block-Gauß-Seidel Iteration ist.

Aufgabe 2 (Additive Schwarz-Methode) (4 Punkte)

Bei der additiven Schwarz-Methode ist die Iterationsvorschrift gegeben durch

xk+1 = xk + ω
p∑

i=1
RT

i A−1
i Ri(b−Axk), ω ∈ R,

wobei Ri, Ai wie bei der multiplikativen Variante definiert sind. Zeigen Sie, dass die Matrix

M−1 =
p∑

i=1
RT

i A−1
i Ri, mit Ai = RiART

i ,

die sich als Vorkonditionierer der additiven Schwarz-Methode für eine gegebene Matrix A auf-
fassen lässt, positiv definit ist, falls A positiv definit ist.



Die folgenden Programmieraufgaben befassen sich mit MPI. Das Codegerüst für diese Aufgaben
beinhält auch ein Hello-World Programm für MPI. Sie können zur weiteren Dokumentation von
MPI Befehlen unteranderem Cheat-Sheets1 oder die offizielle Dokumentation2 hinzu nehmen.
Um ein MPI Programm zu kompilieren muss ein spezieller Kompiler verwendet werden. In dem
Codegerüst wird bereits der korrekte Kompiler ausgewählt, Sie müssen sich also darüber nicht
weiter kümmern. Zur Ausführung eines MPI Programms muss ein spezielles Programm verwen-
det werden, mpiexec [-n P] executable. Auf den Rechnern im SR-A ist dieses Programm
(und der passende Kompiler) bereits installiert.

Aufgabe 3 (MPI Kommunikations-Varianten) (4 Punkte)

Schreiben Sie ein MPI Programm, das folgende Schritte durchführt:

(a) Jeder Prozess generiert sich eine Integer-Zahl zwischen 0, · · · , 99. Diese wird dann an
einen vorher bestimmten Prozess gesendet, z.B. der Prozess mit Rang 0. Dieser Prozess
gibt dann die Zahlen aus, sortiert nach dem Prozess der sie gesendet hat. (Dies benötigt
eine “alle-an-einen” Kommunikation.)

(b) Der Prozess mit Rang i berechnet den absoluten Betrag der Differenz zwischen seiner Zahl
und der Zahl vom Prozess i− 1. Der erste Prozess vergleicht dabei seine Zahl mit der des
letzten Prozesses. (Dies benötigt eine “punkt-zu-punkt” Kommunikation im Ring).

(c) Abschließend soll die maximale Differenz von Zahlen zweier benachbarter Prozesse ermit-
telt werden. Das Ergebniss soll wieder an alle Prozesse gesendet werden und der Prozess,
an dem die maximale Differenz erreicht wurde soll eine Nachricht ausgeben. (Dies benötigt
neben einer “alle-an-einen” zusätzlich eine “eine-an-alle” Kommunikation.)

Für diese Aufgabe werden Sie unteranderem folgende Befehle benötigen:

int MPI_Send(void *buf, int count, MPI_Datatype datatype, int dst, int tag,
MPI_Comm comm);

int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int src, int tag,
MPI_Comm comm, MPI_Status *status);

Die zu empfangenen oder sendenen Daten werden in buf übergeben, wobei count angiebt wie
viele Daten übertragen werden sollen. Für diese Aufgabe wird count immer 1 sein. datatype gibt
an, welchen Typen die Daten haben, hier sollte dies MPI_INT sein. Der Rang des Ziel- oder Quell-
Prozesses wird an dst, oder src übergeben, wobei damit der Rang bzgl. der durch comm defi-
nierten Prozessor-Gruppe gemeint ist. Hier kann einfach die Standard-Gruppe MPI_COMM_WORLD
verwendet werden. Der Tag zweier zusammemgehöriger Kommunikationen (send und recv) muss
bei beiden Aufrufen der gleiche sein.

int MPI_Reduce (void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype,
MPI_Op op, int root, MPI_Comm comm);

Damit können Daten von allen Prozessen an einen Prozess (root) gesendet und gleichzeitig
verarbeitet werden. Wie die Daten verarbeitet werden, ist in op definiert, z.B. kann durch

1http://kayaogz.github.io/teaching/app4-programmation-parallele-2018/cours/MPI-cheatsheet.
pdf

2http://www.mpich.org/static/docs/latest/

http://kayaogz.github.io/teaching/app4-programmation-parallele-2018/cours/MPI-cheatsheet.pdf
http://kayaogz.github.io/teaching/app4-programmation-parallele-2018/cours/MPI-cheatsheet.pdf
http://www.mpich.org/static/docs/latest/


MPI_SUM die Summe über alle Werte gebildet werden oder über MPI_MAX das Maximum über
alle Werte. Die zu sendenen Daten werden an sendbuf übergeben, die empfangenen Daten
werden in recvbuf gespeichert. Dabei ist zu beachten, dass nach dieser Funtkion nur in dem
Prozess mit Rang root recvbuf Daten enthält, in den anderen Prozessen sollte nicht davon
ausgegangen werden, dass recvbuf sinnvolle Daten enthält.

int MPI_Bcast (void *buf, int count, MPI_Datatype datatype, int root, MPI_Comm comm);

Diese Funktion sendet die Daten von Rang root in buf an alle Prozesse.

Hinweis: Die Daten zur Übertragung werden durch Pointer übergeben. Bei einer lokalen Va-
riable int a, erhält man einen Pointer, der auf diese Variable zeigt durch &a. Bei
std::vector oder std::array Objekten, kann man den Pointer auf die Daten durch
die Klassenfunktion data() erhalten.

Aufgabe 4 (Parallelisierung des Turingmodells mit MPI) (12 Punkte)

Betrachten Sie die Implementierung von Aufgabe 3 auf Blatt 5 zusammen mit dem konkreten
Modell zur Belousov-Zhabotinsky Reaktion aus Aufgabenteil (c). Parallelisieren Sie den Code,
indem Sie das Rechengebiet Ω in Teilgebiete zerlegen, welche parallel bearbeitet werden. Die
Teilgebiete sollen möglichst „rund“ sein, d.h. die Kantenlängen jedes Teilgebiets sollen möglichst
gleich groß sein.

• Die in einem konkreten Teilgebiet liegenden Gitterzellen sollen von einem einzelnen Pro-
zess bearbeitet werden. Aus Sicht dieses Prozesses wollen wir sie deshalb owner-Zellen
betiteln. Die Funktion für die rechte Seite jeder Komponente des mit dem zellzentrierten
Finite-Volumen-Verfahren semidiskretisierten Diffusionsproblems benötigt alle Nachbarn
der owner-Zellen. Jedes Teilgebiet sollte also in Richtung der angrenzenden Teilgebiete je-
weils um eine Reihe von Gitterzellen erweitert werden, welche eigentlich in einem anderen
Teilgebiet liegen, d.h. owner-Zellen eines anderen Prozesses sind. Derartige Gitterzellen
nennen wir overlap-Zellen. Die lokalen Daten eines Prozesses sollten also sowohl in ow-
ner-Zellen als auch in overlap-Zellen liegen, die Berechnungen hingegen auf owner-Zellen
eingeschränkt werden.

P1 P2
Parallele Aufteilung der Gitterzellen auf
zwei Prozesse P1, P2.

owner

overlap

Vergrößerung des Teilgebietes von P1 sowie
Identifizierung der owner- und overlap-Zel-
len.



• Nach der Berechnung eines neuen Zeitschrittes steht für overlap-Zellen der falsche Wert im
lokalen Lösungsvektor. Um den richtigen Wert zu erhalten, müssen die Daten in overlap-
Zellen mit den Nachbarprozessen ausgetauscht werden. Bei der Kommunikation sollten so
wenig Daten wie möglich verschickt werden, d.h. wirklich nur die Daten in overlap-Zellen.

• Die Klasse zur Generierung von Gitterinformationen für Finite-Volumen-Verfahren auf
kartesischen Gittern sollte derart erweitert werden, dass sie zusätzlich die für die Paralle-
lisierung nötigen Informationen über die parallele Gitteraufteilung liefert. Die

• Um die Kommunikation zwischen den Prozessen zu vereinfachen, ordnen Sie die Prozesse
ebenfalls in einem kartesischem Gitter an. Dazu müssen Sie den Rang eines Prozesses ein-
deutig einen 2 dimensionalen Index zu ordnen. Sie können selbstgeschriebene Funktionen
dafür nutzen, oder Sie greifen auf MPI Funktionen zurück. Zur Behandlung von Prozessen
in einem kartesischem Gitter stellt MPI folgende Funktionen zur verfügung:

int MPI_Dims_create(int nnodes, int ndims, int *dims)

liefert eine mögliche Aufteilung von nnodes Prozessen auf ein ndims dimensionales Gitter,
welche in dims zurück gegeben wird. So werden zum Beispiel 6 Prozesse auf einem 2D
Gitter in 3 × 2 partitioniert. Beachten Sie, dass dims mit Null initialisiert sein muss, da
nur Einträge in dims gleich Null verändert werden.

int MPI_Cart_create(MPI_Comm comm_old, int ndims, int *dims, int *periods,
int reorder, MPI_Comm *comm_cart)

erzeugt einen neuen MPI Kommunikator comm_card mit Prozessen aus dem alten Kom-
munikator comm_old, der die Prozesse auf ein kartesisches ndims dimensionales Gitter
abbildet. Die Anordnung der Prozesse auf dem Gitter ist durch dims gegeben. In 2D ent-
spricht dabei dims[0] dem y Index und dims[1] dem x Index. In periods wird festgelegt,
ob die Ränder des Gitters periodisch sind, d.h. ob Daten, die z.B. am oberen Rand bildlich
gesprochen nach oben gesendet werden, am unteren Rand ankommen. Sie sollten dieses
Array auf Null setzten, um die Periodizität zu deaktivieren. Der Parameter reorder gibt
an, ob die Ränge der Prozesse geändert werden darf oder nicht, setzen Sie diesen Wert
einfach auf Null.

int MPI_Cart_rank(MPI_Comm comm, int coords[], int *rank)
int MPI_Cart_coords(MPI_Comm comm, int rank, int maxdims, int coords[])

erlaubt die Umwandlung zwischen dem Rang eines Prozesses und dessen Koordinaten im
kartesichen Gitter. Es muss gelten coords[i] < dims[i]. Damit lässt sich leicht feststellen,
mit welchen Prozessen kommunitiert werden muss. Möchte man zum Beispiel mit dem
Prozess rechts von einem, d.h. in dims[0] Richtung +1, kann man folgendes Konstrukt
verwenden

int my_coords[2] = {0,0};
MPI_Cart_coords(comm, my_rank, my_coords);



int right_rank;
int right_coords[2] = {my_coords[0],my_coords[1]+1};
MPI_Cart_rank(comm, right_coords, right_rank);

Die folgende Funktion ermöglicht es beide Nachbarn in einer Richtung eines Prozesses
gleichzeitig zu bestimmen.

int MPI_Cart_shift(MPI_Comm comm, int direction, int disp,
int *rank_source, int *rank_dest)

In rank_source befindet sich der Rang des Prozess mit den Koordinaten

coords = my_coords; coords[direction] -= disp;

und in rank_dest entsprechend der Rang des Prozesse mit Koordinaten coords[direction]
+= disp. Falls direction=1 und disp=1 entsprich rank_source dem Rang des Prozesses
links von einem und rank_dest dem Rang des Prozesses rechts von einem. Befindet sich
der Prozess, der diese Funktion aufruft, auf dem Rand des Gitters bezüglich der direction
Richtung dann enthält einer der Rückgabewerte MPI_PROC_NULL um zu zeigen, dass dort
kein Nachbar ist. Bei dem Datenaustausch kann dieses Makro benutzt werden sowie ein
gültiger Rang, nur das in diesem Fall ein Aufruf einer Send- oder Recive-Funktion keinen
Effekt hat.

• Das Schreiben der Visualisierungdaten sollte von einem einzelnen Prozess durchgeführt
werden, um Koordinationsprobleme beim Zugriff auf die Datei zu vermeiden. Die ein-
fachste Möglichkeit ist es also, an dieser Stelle des Codes auf eine Parallelisierung zu
verzichten und alle Prozesse eine Kopie ihres kompletten lokalen Lösungsvektors an einen
ausgezeichneten Prozess schicken zu lassen, welcher dann alle Daten in eine Datei schreibt.


