
Institut für Numerische und Angewandte Mathematik 11.11.2019
FB Mathematik und Informatik der Universität Münster
Prof. Dr. Christian Engwer, MSc Marcel Koch

Übung zur Vorlesung
Wissenschaftliches Rechnen

WS 2019/20 — Blatt 5

Abgabe: 25.11.2019, 10:00 Uhr
Code zusätzlich per e-mail an marcel.koch@uni-muenster.de

Achtung: Achten Sie darauf, Ihre Programme ordentlich zu formatieren und gut zu kommen-
tieren. Die Form wird mit in die Bewertung eingehen.

Die Programmieraufgabe befasst sich mit der numerischen Lösung von Reaktions-Diffusions-
Systemen. Dazu wird die eigentliche Implementierung in mehrere Schritte aufgeteilt. Zunächst
wird das Newton-Verfahren zur Nullstellen Bestimmung implementiert und darauf aufbauend
das Theta-Verfahren zur Zeitdiskretisierung. Mit diesen beiden Bausteinen lässt sich dann ein
Löser für Reaktions-Diffusions-Systeme umsetzen.

Bemerkung 1 (Gleichungslöser)

Im praktischen Teil dieses Aufgabenblattes geht es um die Lösung nichtlinearer Gleichungssys-
teme in Rn. Diese treten zum Beispiel bei impliziten Zeitschrittverfahren auf. Das Lösen eines
nichtlinearen Gleichungssystems lässt sich formulieren als die Bestimmung der Nullstelle einer
Funktion r : Rn → Rn. Um verschiedene lineare oder nichtlineare Gleichungslöser auswählen zu
können (Newton-Verfahren, CG-Verfahren, Gauß-Seidel-Verfahren, . . .), führen wir folgendes
Interface ein:

1 template <typename Vector , typename Matrix>
c l a s s So lve r {

3 p u b l i c :
us ing VectorType = Vector ;

5 us ing MatrixType = Matrix ;
us ing FunctionType = D i f f e r e n t i a b l e F u n c t i o n <VectorType , VectorType , MatrixType >;

7
v i r t u a l VectorType apply (const FunctionType& r , const VectorType& z) const = 0 ;

9 } ;

Zur Repräsentation von Funktionen wie r verwendet dieses wiederum folgendes Interface für
differenzierbare Funktionen, die nicht von der Zeit abhängen:

1 template <typename Domain , typename Range , typename JacobianRange>
c l a s s D i f f e r e n t i a b l e F u n c t i o n {

3 p u b l i c :
us ing DomainType = typename D i f f e r e n t i a b l e F u n c t i o n : : DomainType ;

5 us ing RangeType = typename D i f f e r e n t i a b l e F u n c t i o n : : RangeType ;
us ing JacobianRangeType = JacobianRange ;

7
v i r t u a l DomainType operator () (const DomainType& x) const = 0 ;

9 v i r t u a l JacobianRangeType eva luateJacob ian (const DomainType& x) const = 0 ;
} ;

Definition 1 (Newton-Verfahren)

Sei r : Rn → Rn stetig differenzierbar. Das Newton-Verfahren liefert über die Fixpunktiteration

zl+1 := zl −
(
Jk(zl)

)−1
r(zl), l = 0, 1, 2, . . . (1)

zu einem geeignet gewählten Startwert z0 ∈ Rn eine Folge (zl)l∈N, die gegen eine Nullstelle von
r konvergiert. Genauer kann man zeigen, dass es zu jeder Nullstelle z ∈ Rn eine Umgebung
D ⊂ Rn gibt, so dass das Newton-Verfahren für alle Startwerte z0 ∈ D quadratisch gegen z
konvergiert, falls r in einer Umgebung von z Lipschitz-stetig ist und in z eine invertierbare
Jakobi-Matrix Jk(z) besitzt.

Aufgabe 1 (Newton-Verfahren) (4 Punkte)

Implementieren Sie das Newton-Verfahren in C++. Schreiben Sie dazu ein Klassentemplate
NewtonSolver, welches das Interface Solver erfüllt.

• Das Verfahren soll für verschiedene Datentypen anwendbar sein, mit denen sich Vektoren
in Rn und Matrizen in Rn×n repräsentieren lassen. Zu diesem Zweck soll NewtonSolver
zwei Template-Parameter Vector und Matrix besitzen. Setzen Sie voraus, dass Vector
eine Methode operator[] für den indexbasierten Zugriff auf die Elemente des Vektors
und eine Methode size zur Verfügung stellt (wie z.B. std::array). Setzen Sie ferner
voraus, dass auf die Elemente und Größe einer Matrix vom Typ Matrix durch die doppelte
Anwendung dieser Methoden zugegriffen werden kann, d.h. dass die Matrix als Vektor von
Zeilenvektoren repräsentiert wird.

• Abbruchkriterium: Die Fixpunktiteration (1) soll so lange durchgeführt werden, bis die
Änderungsrate ‖zl+1 − zl‖ eine zu übergebende Schranke eps unterschreitet.

• Beschränken Sie sich auf den Fall n ∈ {1, 2, 3}, für den sich die Invertierung einer regulären
n× n-Matrix explizit hinschreiben lässt (siehe Lineare Algebra I); behandeln Sie den Fall
n > 3 mit einer Exception oder fangen Sie ihn mit einer Assertion ab.

• Testen Sie Ihre Implementierung in dem Sie vom Interface DifferentiableFunction eine
Funktion ableiten, die der Funktion

f

(
x1
x2

)
=
(cos(x1)−sin(x2)

4 − x1
cos(x1)−2 sin(x2)

4 − x2

)

entspricht und bestimmen Sie deren Nullstelle. Als Startvektor wählen Sie x0 = (0, 0)T .

Definition 2 (Theta-Verfahren)

Gegeben sei ein AWP 1. Ordnung

y′ = f(t, y), auf I := [t0, T], t0, T ∈ R+
0 ,

y(t0) = y0, y0 ∈ Rn,

mit f : I ×Rn → Rn stetig, n ∈ N. Auf I sei I∆t := {tk = t0 + k∆t | k = 0, 1, 2, . . . ∧ tk ≤ T}
ein gewähltes Gitter mit zugehöriger Schrittweite ∆t ∈ R+. Dann liefert die Iterationsvorschrift

yk+1 = yk + ∆t
(
(1− θ)f(tk, yk) + θf(tk+1, yk+1)

)
, k = 0, 1, 2, . . . (2)

für festes θ ∈ [0, 1] Approximationen yk ≈ y(tk) der Lösung des AWPs. Für autonome gewöhn-
liche Differentialgleichungen gilt das zum impliziten Euler-Verfahren gesagte.

Bemerkung 2 (Theta-Verfahren)

Das explizite Euler-Verfahren (θ = 0) ist das einzige explizite Theta-Verfahren. Für θ 6= 0 erge-
ben sich implizite Verfahren. Die Wahl θ = 1 liefert das implizite Euler-Verfahren und θ = 0.5
das implizite Analogon zum Heun-Verfahren von Blatt 2, die sogenannte Crank-Nicolson-Me-
thode.
Zur Anwendung eines impliziten Verfahrens sollen Sie in jedem Zeitschritt ihren Newton-Solver
verwenden. Dazu wird das Lösen eines Gleichungssystems äquivalent formuliert als die Bestim-
mung der Nullstelle einer Funktion rk : Rn → Rn. Beim impliziten Euler-Verfahren z.B. ist
rk(z) := z − yk −∆t · f(tk + ∆t, z).

Aufgabe 2 (Theta-Verfahren) (4 Punkte)

Implementieren Sie in C++ ein Klassentemplate ThetaScheme zur Durchführung des Theta-
Verfahrens für den allgemeinen Fall eines nicht-autonomen AWPs 1. Ordnung.

• Das Verfahren soll für verschiedene Datentypen anwendbar sein, mit denen sich Vektoren
in Rn, Matrizen in Rn×n und Zeiten in R+

0 repräsentieren lassen. Zu diesem Zweck soll
ThetaScheme drei Template-Parameter VectorType, MatrixType und TimeType besitzen.
Stellen Sie an VectorType und MatrixType die gleichen Vorraussetzungen wie in Aufgabe
1.

• Der Konstruktor des Klassentemplates soll einen Gleichungslöser als Objekt einer Klasse
erhalten, die das Interface Solver aus Bemerkung 1 erfüllt. Ferner soll er die Funktion
f : I×Rn → Rn als Objekt einer Klasse erhalten, die folgendes Interface für zeitabhängige,
örtlich differenzierbare Funktionen geeignet erfüllt:

template <typename Domain , typename Range , typename JacobianRange ,
2 typename Time = double>

c l a s s Di f f e r ent iab l eT imeFunct ion {
4 p u b l i c :

us ing DomainType = Domain ;
6 us ing RangeType = Range ;

us ing TimeType = Time ;
8 us ing JacobianRangeType = JacobianRange ;

10 v i r t u a l RangeType operator () (const TimeType& t , const DomainType& x) const = 0 ;

12 v i r t u a l JacobianRangeType eva luateJacob ian (const TimeType& t ,
const DomainType& x) const = 0 ;

14 } ;

• Mit der Methode

VectorType apply (const TimeType& t, const TimeType& dt,
const VectorType& y_old) const

sollen die durch die Iterationsvorschrift festgelegten Schritte des Verfahrens ausgeführt
werden können. Dabei bezeichnen t sowie dt den Zeitpunkt tk sowie die Schrittweite
∆t des aktuellen Zeitschritts und y_old entspricht der Approximationen yk zum alten
Zeitpunkt.

• Überlegen Sie sich, wie rk beim Theta-Verfahren aussieht und wie die Jakobi-Matrix von
rk mit der Jakobi-Matrix von f zusammenhängt.

• Verwenden Sie zur Bestimmung der Approximation yk+1 zum neuen Zeitpunkt die Ap-
proximation yk zum alten Zeitpunkt als initial guess für den Gleichungslöser.

• Im Falle θ = 0 soll aus Effizienzgründen der Gleichungslöser ignoriert werden und das
explizite Euler-Verfahren direkt durchgeführt werden.

• Für den Test Ihrer Implementierung betrachten Sie den diffusionslosen Spezialfall des
Schnakenberg-Modells

a′ = ca − raa+ sa2b

b′ = cb − sa2b.

Leiten Sie vom Interface DifferentiableTimeFunction eine entsprechende Klasse für
die rechte Seite ab und plotten Sie die zeitliche Entwicklung der Konzentrationen a und
b einmal für das explizite und einmal für das implizite Euler-Verfahren. Verwenden Sie
dabei testweise die Parameter s = rb = ca = cb = 1, ra = 2, die Anfangswerte a(0) = 0.5
sowie b(0) = 5, die maximale Zeit T = 50 und die Schrittweite ∆t = 0.001.

Aufgabe 3 (Turing-Modell, Computermodell mit Operator-Splitting) (8 Punkte)

Betrachten Sie das Reaktions-Diffusions-System

∂ta = Da∆a+ g1(a, b)
∂tb = Db∆b+ g2(a, b)

}
in Ω ⊂ Rd × [0, T] (3a)

mit Neumann-Randbedingungen

∇a · n = 0, ∇b · n = 0 auf ∂Ω× [0, T] (3b)

und Anfangsbedingungen

a(·, 0) = a0, b(·, 0) = b0 in Ω, (3c)

welches Sie in der Vorlesung als Turing-Modell kennengelernt haben. Um dieses zu simulieren
wollen wir ein Computermodell für (3) herleiten. Dabei beschränken wir uns auf ein rechteckiges
Gebiet Ω = [0, L]2 ⊂ R2, welches durch ein kartesisches Gitter1 partitioniert ist.

1Ein kartesisches Gitter ist ein gleichmäßiges Gitter mit uniformer Kantenlänge, d.h. es besteht aus rechte-
ckigen Zellen mit achsenparallelen Kanten, die alle gleich lang sind.

(a) Leiten Sie mit der Linienmethode und dem zellzentrierten Finite-Volumen-Verfahren eine
Semidiskretisierung im Ort her. Beide Methoden sind aus der Vorlesung bekannt. Dort ha-
ben Sie darüber hinaus das Strang-Splitting kennengelernt. Verwenden Sie dieses, um den
Diffusions- und den Reaktionsanteil in der Semidiskretisierung voneinander zu splitten.

(b) Diskretisieren wir die semidiskreten Probleme nun in der Zeit, erhalten wir ein Compu-
termodell. Für das Diffusionsproblem wollen wir das explizite Euler-Verfahren verwenden
und für das Reaktionsproblem das implizite Euler-Verfahren. Implementieren Sie das re-
sultierende Computermodell in C++.

• Auf der Vorlesungshomepage finden Sie Code zur Generierung von Anfangswerten,
zur Generierung von Gitterinformationen für Finite-Volumen-Verfahren auf kartesi-
schen Gittern und für die Datenausgabe im VTK Dateiformat (→ Paraview).
• Verwenden Sie die Implementierung des Theta-Verfahrens. Wählen Sie dabei als Tem-
plate-Parameter VectorType, MatrixType und TimeType geeignete Datentypen. Be-
nutzen Sie als Gleichungssystemslöser für das implizite Euler-Verfahren die Imple-
mentierung des Newton-Verfahrens.
• Wählen Sie die Zeitschrittweite geeignet. Beachten Sie die CFL-Bedingung beim ex-
pliziten Euler-Verfahren, die eine Beschränkung der Zeitschrittweite mit sich bringt.

(c) Verwenden Sie die Anfangswerte a0 und b0 aus dem zur Verfügung gestellten Code und
testen Sie Ihre Implementierung an dem konkreten Modell

g1(a, b) := 1/ε0
(
w0(b) a+ w1(a) b− a2), w0(b) := (1.0−mb)/(1.0−mb+ ε1),

g2(a, b) := w0(b) a− b, w1(a) := p(q − a)/(q + a),

mit
Da = 1.0, Db = 10.0, ε0 = 2.2, ε1 = 0.02,
q = 0.0002, p = 1.1, m = 0.0007.

Dieses Modell beschreibt chemische Experimente für die Belousov-Zhabotinsky Reaktion,
die in [Bánsági et al., 2011]2 präsentiert werden. Die Experimente führen zu einer (eigent-
lich dreidimensionalen) Musterbildung, welche mit Hilfe eines Tomographen beobachtet
werden kann.

2Bánsági, Tamás, Vladimir K. Vanag, and Irving R. Epstein. “Tomography of reaction-diffusion microemulsi-
ons reveals three-dimensional Turing patterns.” Science 331.6022 (2011): 1309-1312.

