Institut fiir Numerische und Angewandte Mathematik 11.11.2019
FB Mathematik und Informatik der Universitat Miinster
Prof. Dr. Christian Engwer, MSc Marcel Koch

Ubung zur Vorlesung
Wissenschaftliches Rechnen
WS 2019/20 — Blatt 5

Abgabe: 25.11.2019, 10:00 Uhr

Code zusétzlich per e-mail an marcel .koch@uni-muenster.de

Achtung: Achten Sie darauf, Thre Programme ordentlich zu formatieren und gut zu kommen-
tieren. Die Form wird mit in die Bewertung eingehen.

Die Programmieraufgabe befasst sich mit der numerischen Losung von Reaktions-Diffusions-
Systemen. Dazu wird die eigentliche Implementierung in mehrere Schritte aufgeteilt. Zunéchst
wird das Newton-Verfahren zur Nullstellen Bestimmung implementiert und darauf aufbauend
das Theta-Verfahren zur Zeitdiskretisierung. Mit diesen beiden Bausteinen ldsst sich dann ein
Loéser fiir Reaktions-Diffusions-Systeme umsetzen.

Bemerkung 1 (Gleichungsloser)

Im praktischen Teil dieses Aufgabenblattes geht es um die Losung nichtlinearer Gleichungssys-
teme in IR™. Diese treten zum Beispiel bei impliziten Zeitschrittverfahren auf. Das Losen eines
nichtlinearen Gleichungssystems lasst sich formulieren als die Bestimmung der Nullstelle einer
Funktion r : R™ — R"™. Um verschiedene lineare oder nichtlineare Gleichungsléser auswéhlen zu
konnen (Newton-Verfahren, CG-Verfahren, GauB-Seidel-Verfahren, ...), fithren wir folgendes
Interface ein:

template <typename Vector, typename Matrix>
class Solver{
public:
using VectorType = Vector;
using MatrixType = Matrix;
using FunctionType = DifferentiableFunction<VectorType, VectorType , MatrixType >;

o

virtual VectorType apply (const FunctionType& r, const VectorType& z) const = 0;

o };

Zur Représentation von Funktionen wie r verwendet dieses wiederum folgendes Interface fiir
differenzierbare Funktionen, die nicht von der Zeit abhéngen:

template <typename Domain, typename Range, typename JacobianRange>
class DifferentiableFunction{

3| public:
using DomainType = typename DifferentiableFunction :: DomainType;
5 using RangeType = typename DifferentiableFunction :: RangeType;
using JacobianRangeType = JacobianRange;

virtual DomainType operator () (const DomainType& x) const = 0;
9 virtual JacobianRangeType evaluateJacobian (const DomainType& x) const = 0;

Definition 1 (Newton-Verfahren)

Sei r : R™ — R" stetig differenzierbar. Das Newton-Verfahren liefert {iber die Fixpunktiteration
A=l - (Jk(zl))_l r(z), 1=0,1,2,... (1)

zu einem geeignet gewihlten Startwert 20 € R™ eine Folge (2!);en, die gegen eine Nullstelle von
r konvergiert. Genauer kann man zeigen, dass es zu jeder Nullstelle z € R™ eine Umgebung
D C R" gibt, so dass das Newton-Verfahren fiir alle Startwerte 20 € D quadratisch gegen z
konvergiert, falls r in einer Umgebung von z Lipschitz-stetig ist und in z eine invertierbare
Jakobi-Matrix J¥(z) besitzt.

Aufgabe 1 (Newton-Verfahren) (4 Punkte)

Implementieren Sie das Newton-Verfahren in C++4. Schreiben Sie dazu ein Klassentemplate
NewtonSolver, welches das Interface Solver erfiillt.

e Das Verfahren soll fiir verschiedene Datentypen anwendbar sein, mit denen sich Vektoren
in R™ und Matrizen in R™*™ repréasentieren lassen. Zu diesem Zweck soll NewtonSolver
zwei Template-Parameter Vector und Matrix besitzen. Setzen Sie voraus, dass Vector
eine Methode operator[] fiir den indexbasierten Zugriff auf die Elemente des Vektors
und eine Methode size zur Verfiigung stellt (wie z.B. std::array). Setzen Sie ferner
voraus, dass auf die Elemente und Groéfle einer Matrix vom Typ Matrix durch die doppelte
Anwendung dieser Methoden zugegriffen werden kann, d.h. dass die Matrix als Vektor von
Zeilenvektoren reprasentiert wird.

e Abbruchkriterium: Die Fixpunktiteration soll so lange durchgefiihrt werden, bis die
Anderungsrate ||z/*1 — 2!|| eine zu iibergebende Schranke eps unterschreitet.

e Beschrianken Sie sich auf den Fall n € {1, 2, 3}, fiir den sich die Invertierung einer reguléren
n x n-Matrix explizit hinschreiben léasst (siehe Lineare Algebra I); behandeln Sie den Fall
n > 3 mit einer Exception oder fangen Sie ihn mit einer Assertion ab.

e Testen Sie Thre Implementierung in dem Sie vom Interface DifferentiableFunction eine
Funktion ableiten, die der Funktion

s T _ cos(ml)zsil'm(xg) —z
x9 cos(a:l)—4251n(ac2) — 2
entspricht und bestimmen Sie deren Nullstelle. Als Startvektor withlen Sie o = (0,0)7.

Definition 2 (Theta-Verfahren)
Gegeben sei ein AWP 1. Ordnung

mit f: 1 x R® — R" stetig, n € IN. Auf I sei In, := {tF =t + kAt |k =0,1,2,... A tF < T}
ein gewihltes Gitter mit zugehoriger Schrittweite At € R™. Dann liefert die Iterationsvorschrift

= F 4 A((1 - 0) F(ER) + 0@ YY), R =0,1,2,0 (2)

fiir festes @ € [0, 1] Approximationen y* ~ y(t*) der Losung des AWPs. Fiir autonome gewohn-
liche Differentialgleichungen gilt das zum impliziten Euler-Verfahren gesagte.

Bemerkung 2 (Theta-Verfahren)

Das explizite Euler-Verfahren (6 = 0) ist das einzige explizite Theta-Verfahren. Fiir 6 # 0 erge-
ben sich implizite Verfahren. Die Wahl 8 = 1 liefert das implizite Euler-Verfahren und 6 = 0.5
das implizite Analogon zum Heun-Verfahren von Blatt 2, die sogenannte Crank-Nicolson-Me-
thode.

Zur Anwendung eines impliziten Verfahrens sollen Sie in jedem Zeitschritt ihren Newton-Solver
verwenden. Dazu wird das Losen eines Gleichungssystems dquivalent formuliert als die Bestim-
mung der Nullstelle einer Funktion r* : R® — R"™. Beim impliziten Euler-Verfahren z.B. ist
rR(2) =z —yF — At f(tF + At 2).

Aufgabe 2 (Theta-Verfahren) (4 Punkte)

Implementieren Sie in C++ ein Klassentemplate ThetaScheme zur Durchfithrung des Theta-
Verfahrens fiir den allgemeinen Fall eines nicht-autonomen AWPs 1. Ordnung.

e Das Verfahren soll fiir verschiedene Datentypen anwendbar sein, mit denen sich Vektoren
in R™, Matrizen in R™*™ und Zeiten in]Rar reprasentieren lassen. Zu diesem Zweck soll
ThetaScheme drei Template-Parameter VectorType, MatrixType und TimeType besitzen.
Stellen Sie an VectorType und MatrixType die gleichen Vorraussetzungen wie in Aufgabe

!

e Der Konstruktor des Klassentemplates soll einen Gleichungsloser als Objekt einer Klasse
erhalten, die das Interface Solver aus Bemerkung [I] erfiillt. Ferner soll er die Funktion
f i IxR™ — R™ als Objekt einer Klasse erhalten, die folgendes Interface fiir zeitabhéngige,
ortlich differenzierbare Funktionen geeignet erfiillt:

template <typename Domain, typename Range, typename JacobianRange,
2 typename Time = double>

class DifferentiableTimeFunction{

1| public:

using DomainType = Domain;

6 using RangeType = Range;

using TimeType = Time;

8 using JacobianRangeType = JacobianRange;

10 virtual RangeType operator () (const TimeType& t, const DomainType& x) const = 0;

2 virtual JacobianRangeType evaluateJacobian (const TimeType& t,
const DomainType& x) const = 0;

e Mit der Methode

VectorType apply (const TimeType& t, const TimeType& dt,
const VectorType& y_old) const

sollen die durch die Iterationsvorschrift festgelegten Schritte des Verfahrens ausgefiihrt
werden konnen. Dabei bezeichnen t sowie dt den Zeitpunkt ¢; sowie die Schrittweite
At des aktuellen Zeitschritts und y_old entspricht der Approximationen gy, zum alten
Zeitpunkt.

Uberlegen Sie sich, wie 7* beim Theta-Verfahren aussieht und wie die Jakobi-Matrix von
r* mit der Jakobi-Matrix von f zusammenhingt.

Verwenden Sie zur Bestimmung der Approximation yi.1 zum neuen Zeitpunkt die Ap-
proximation gy zum alten Zeitpunkt als initial guess fiir den Gleichungsloser.

Im Falle & = 0 soll aus Effizienzgriinden der Gleichungsloser ignoriert werden und das
explizite Euler-Verfahren direkt durchgefiihrt werden.

Fir den Test Ihrer Implementierung betrachten Sie den diffusionslosen Spezialfall des
Schnakenberg-Modells

/
a =c, —rea+ sa’b

b =cp — sa’b.

Leiten Sie vom Interface DifferentiableTimeFunction eine entsprechende Klasse fiir
die rechte Seite ab und plotten Sie die zeitliche Entwicklung der Konzentrationen a und
b einmal fiir das explizite und einmal fiir das implizite Euler-Verfahren. Verwenden Sie
dabei testweise die Parameter s =, = ¢, = ¢ = 1,7, = 2, die Anfangswerte a(0) = 0.5
sowie b(0) = 5, die maximale Zeit T'= 50 und die Schrittweite At = 0.001.

Aufgabe 3 (Turing-Modell, Computermodell mit Operator-Splitting) (8 Punkte)

Betrachten Sie das Reaktions-Diffusions-System

Zﬁigﬁﬁifi’ff} n QR [0,7] (33)
mit Neumann-Randbedingungen

Va-n=0, Vb-n=0 auf 0Q x [0,T] (3b)
und Anfangsbedingungen

a(-,0) = ap, b(-,0) = by in Q, (3c)

welches Sie in der Vorlesung als Turing-Modell kennengelernt haben. Um dieses zu simulieren
wollen wir ein Computermodell fiir herleiten. Dabei beschranken wir uns auf ein rechteckiges
Gebiet Q = [0, L]?> C R?, welches durch ein kartesisches Gittelﬂ partitioniert ist.

'Bin kartesisches Gitter ist ein gleichméBiges Gitter mit uniformer Kantenlinge, d.h. es besteht aus rechte-
ckigen Zellen mit achsenparallelen Kanten, die alle gleich lang sind.

(a) Leiten Sie mit der Linienmethode und dem zellzentrierten Finite-Volumen-Verfahren eine
Semidiskretisierung im Ort her. Beide Methoden sind aus der Vorlesung bekannt. Dort ha-
ben Sie dariiber hinaus das Strang-Splitting kennengelernt. Verwenden Sie dieses, um den
Diffusions- und den Reaktionsanteil in der Semidiskretisierung voneinander zu splitten.

(b) Diskretisieren wir die semidiskreten Probleme nun in der Zeit, erhalten wir ein Compu-
termodell. Fiir das Diffusionsproblem wollen wir das explizite Euler-Verfahren verwenden
und fiir das Reaktionsproblem das implizite Euler-Verfahren. Implementieren Sie das re-
sultierende Computermodell in C++.

e Auf der Vorlesungshomepage finden Sie Code zur Generierung von Anfangswerten,
zur Generierung von Gitterinformationen fir Finite-Volumen-Verfahren auf kartesi-
schen Gittern und fiir die Datenausgabe im VTK Dateiformat (— Paraview).

e Verwenden Sie die Implementierung des Theta-Verfahrens. Wéhlen Sie dabei als Tem-
plate-Parameter VectorType, MatrixType und TimeType geeignete Datentypen. Be-
nutzen Sie als Gleichungssystemsloser fiir das implizite Euler-Verfahren die Imple-
mentierung des Newton-Verfahrens.

e Wihlen Sie die Zeitschrittweite geeignet. Beachten Sie die CFL-Bedingung beim ex-
pliziten Euler-Verfahren, die eine Beschrankung der Zeitschrittweite mit sich bringt.

(c) Verwenden Sie die Anfangswerte ag und by aus dem zur Verfiigung gestellten Code und
testen Sie Ihre Implementierung an dem konkreten Modell

g1(a,b) := 1/gq (wo(b) a + wi(a) b — a?), wo(b) := (1.0 —mb) /(1.0 — mb + €1),

g92(a,b) := wo(b) a — b, wi(a) = p(g —a)/(q + a),
. D, = 1.0, Dy =100, & =22, e1 = 0.02,
mi
q = 0.0002, p=11, m = 0.0007.

Dieses Modell beschreibt chemische Experimente fiir die Belousov-Zhabotinsky Reaktion,
die in [Bansagi et al., 201 1]E| prasentiert werden. Die Experimente fiihren zu einer (eigent-
lich dreidimensionalen) Musterbildung, welche mit Hilfe eines Tomographen beobachtet
werden kann.

2Béansagi, Tamés, Vladimir K. Vanag, and Irving R. Epstein. “Tomography of reaction-diffusion microemulsi-
ons reveals three-dimensional Turing patterns.” Science 331.6022 (2011): 1309-1312.

