
Institut für Numerische und Angewandte Mathematik 21.10.2019
FB Mathematik und Informatik der Universität Münster
Prof. Dr. Christian Engwer, MSc Marcel Koch

Übung zur Vorlesung
Wissenschaftliches Rechnen

WS 2019/20 — Blatt 1

Abgabe: 28.10.2019, 10:00 Uhr, Briefkasten 112
Code zusätzlich per e-mail an marcel.koch@uni-muenster.de

Achtung: Achten Sie darauf, Ihre Programme ordentlich zu formatieren und gut zu kommen-
tieren. Die Form wird mit in die Bewertung eingehen.

Definition 1 (Fließkommazahlen)

F(β, r, s) sei die aus der Vorlesung bekannte allgemeine Darstellung von Fließkommazahlen mit
Basis β, Anzahl r der Mantissenstellen und Anzahl s der Exponentenstellen.

Aufgabe 1 (Eigenschaften Fließkommazahlen) (3 Punkte)

Seien X−, X+ ∈ R die kleinste, bzw. größte darstellbaren Zahlen der F(β, r, s) und rd die in der
Vorlesung eingeführte Rundungsfunktion. Zeigen Sie, dass für x ∈ [X−, X+] gilt

rd(x) = (1 + εx)x, mit |εx| ≤
1
2ε und ε = β1−r.

Hinweis: Sie können ohne Beweis voraussetzen, dass für jede Zahl x ∈ R ein e ∈ Z existiert, so
dass x = mβe, mit m =

∑∞
i=1miβ

−i.

Aufgabe 2 (Rundung) (4 Punkte)

Das gängige Verfahren zum Runden von Zahlen ist das Aufrunden (natürliche Rundung). Bei
Fließkommazahlen F(β, r, s) mit geradem β wird jedoch ein anderes Verfahren verwendet, die
gerade Rundung.
Wenn x eine auf r Stellen zu rundende Zahl ist und left(x) := max{y ∈ F | y ≤ x} sowie
right(x) := min{y ∈ F | y ≥ x} dann gilt beim Aufrunden:

rd(x) =
{

left(x) falls 0 ≤ mr+1 < β/2
right(x) falls β/2 ≤ mr+1 < β

Beim geraden Runden ist dagegen:

rd(x) =


left(x) falls |x− left(x)| < |x− right(x)| oder(

|x− left(x)| = |x− right(x)| und mr gerade
)

right(x) sonst

Dabei ist mi jeweils die i-te Stelle von x.

(a) Berechnen Sie die Folge von Fließkommazahlen

x0 = x, x1 = (x0 	 y)⊕ y, . . . , xn = (xn−1 	 y)⊕ y,

mit x = 1.56 und y = −0.555. Dabei seinen x, xi und y Fließkommazahlen in der Dar-
stellung F(10, 3, 1). Welche Ergebnisse erhalten Sie für die ersten 10 Folgenglieder mit
Aufrunden bzw. mit gerader Rundung?

(b) Diskutieren Sie die Ergebnisse.

(c) Warum wird bei Fließkommazahlen das gerade Runden verwendet?

Definition 2 (Leapfrog-Verfahren)

Gegeben sei ein autonomes AWP 2. Ordnung

y′′ = f(y), auf I := [t0, T], t0, T ∈ R+
0 ,

y(t0) = y0, y0 ∈ Rn,

y′(t0) = v0, v0 ∈ Rn,

mit f : Rn → Rn stetig, n ∈ N. Auf I sei I∆t := {tk = t0 + k∆t | k = 0, 1, 2, . . . ∧ tk ≤ T} ein
gewähltes Gitter mit Schrittweite ∆t ∈ R+. Dann liefert die Iterationsvorschrift

yk+1 = yk + ∆tvk + ∆t2

2 f(yk),

vk+1 = vk + ∆t
2

(
f(yk) + f(yk+1)

)
, k = 0, 1, 2, . . .

Approximationen yk ≈ y(tk), vk ≈ y′(tk) der Lösung des AWPs.

Aufgabe 3 (Konsistenz und Zeitinvertierbarkeit des Leapfrog-Verfahrens) (3 Punkte)

(a) Zeigen Sie, dass das Leapfrog-Verfahren konsistent ist mit Konsistenzordnung 2, d.h. dass
sich die lokalen Diskretisierungsfehler in y und v verhalten wie Θ(∆t2):

Ty,∆t(tk+1) := 1
∆t

(
y(tk+1)− y(tk)

)
− v(tk)− ∆t

2 f
(
y(tk)

)
,

Tv,∆t(tk+1) := 1
∆t

(
v(tk+1)− v(tk)

)
− 1

2

(
f
(
y(tk)

)
+ f

(
y(tk+1)

))
.

(b) Zeigen Sie, dass das Leapfrog-Verfahren zeitinvertierbar ist, d.h. dass die Iterationsvor-
schrift mit den Zeitschrittweiten +∆t und −∆t angewandt auf das Paar (yk, vk) wieder
in den Ausgangspaar resultiert. Welche Bedeutung hat die Zeitinvertierbarkeit für die
Energieerhaltung?

Aufgabe 4 (n-Körper Problem) (6 Punkte)

Betrachten Sie das n-Körper Problem aus der Vorlesung. Durch Diskretisierung mit dem in
Definition 2 formulierten Leapfrog-Verfahren erhalten wir ein Computermodell. Implementieren
Sie dieses in C++ in der Variante mit dem n2-Algorithmus aus der Vorlesung.

• Auf der Vorlesungshomepage finden Sie ein Code-Gerüst, dass von Ihnen nur noch um die
Implementierung des Leapfrog-Verfahrens und der Beschleunigungsberechnung erweitert
werden muss. Nähere Informationen dazu finden Sie in der Readme.md. Die Daten werden
im VTk Dateiformat ausgegeben und können mit dem Programm Paraview visualisiert
werden, welches unter http://www.paraview.org zum Download verfügbar ist.

• Es gibt verschiedene Varianten die Daten für die n Körper als einen zusammenhängen-
den Block im Speicher abzulegen. Im Großen und Ganzen gibt es die folgenden beiden
Möglichkeiten, die auch beide von den Ihnen zur Verfügung gestellten Klassen unterstützt
werden:

using Vector3D = std::array<double,3>;

// Variante 1:
struct Body {

Vector3D r_i;
Vector3D v_i;
double m_i;

};

std::vector<Body> data;

// Variante 2:
struct Data {

std::vector<Vector3D> r;
std::vector<Vector3D> v;
std::vector<double> m;

};

Data data;
Entscheiden Sie sich für eine der beiden Möglichkeitenund begründen Sie Ihre Wahl.

• Nutzen Sie bei der Berechnung der Beschleunigungen ai :=
∑

j 6=i
1

mi
Fij mit

Fij := G
mimj

‖rj − ri‖2
rj − ri

‖rj − ri‖

zur Steigerung der Performance die Symmetrie Fij = −Fji aus und weichen Sie die Norm
im Nenner auf, um einer Division durch null vorzubeugen.

• Messen Sie in Ihrem Code die für die Berechnungen benötigte Zeit und zeigen Sie gra-
phisch eine O(N2) Komlpexitiät. Zur Darstellung eignet sich unter anderem das Pro-
gramm gnuplot.

