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Achtung: Achten Sie darauf, Ihre Programme ordentlich zu formatieren und gut zu kommen-
tieren. Die Form wird mit in die Bewertung eingehen.

Aufgabe 1 (Energieerhaltung der Pendelgleichung) (4 Punkte)

Neben der Konsistenzordnung können auch Erhaltungseigenschaften von Verfahren für die Qua-
lität einer numerischen Lösung wichtig sein. Wir betrachten die allgemeine Pendelgleichung

my′′(t) + k(y(t)) = 0, y(0) = y0, y′(0) = v0 (1)

mit nichtlinearer Rückstellkraft k : R → R, Masse m ∈ R+, Anfangsauslenkung y0 ∈ R und
Anfangsgeschwindigkeit v0 ∈ R.

(a) Zeigen Sie, dass im linearen Fall k(y) = κy, κ ∈ R+, für die Lösung der Pendelgleichung
die Gesamtenergie
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in der Zeit konstant bleibt.

(b) Betrachten Sie das Leap-Frog-Verfahren zur Diskretisierung des autonomen AWPs (1) im
linearen Fall. Zeigen Sie, dass die Gesamtenergie näherungsweise erhalten bleibt, d.h.
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(c) Im nichtlinearen Fall ist die Gesamtenergie gegeben durch
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Zeigen Sie, dass auch im nichtlinearen Fall für die Lösung der Pendelgleichung die Gesam-
tenergie in der Zeit konstant bleibt.



Aufgabe 2 (Symplektizität) (2 Punkte)

Wir betrachten den linearen Fall der Pendelgleichung (1). Zeigen Sie, dass das Heun-Verfahren
angewandt auf das zu dieser Gleichung äquivalente AWP 1. Ordnung nicht symplektisch ist.

Tipp: In der Vorlesung wurde gezeigt, dass das explizite Euler-Verfahren angewandt auf das
dort betrachtete (entdimensionalisierte) mathematische Pendel nicht symplektisch ist. Sie
können analog zur Vorlesung vorgehen. Überlegen Sie sich zunächst, wie der numerische
Fluß Φheun,∆t : (yk, vk) 7→ (yk+1, vk+1) aussieht.

Aufgabe 3 (Explizites und Implizites Euler-Verfahren) (3 Punkte)

Implementieren Sie zwei Klassen [Explicit|Implicit]EulerScheme zur Durchführung beider
Euler-Verfahrens für den allgemeinen Fall eines nicht-autonomen AWPs 1. Ordnung. Beide
Klassen sollen dabei ein gemeinsames Interface erfüllen, das wie folgt definiert ist:

• Der Konstruktor beider Klassen erhält eine Funktion f : I ×Rn → Rn und im Falle des
impliziten Euler-Verfahrens zusätzlich eine Funktion J : Rn → Rn×n zur Berechnung der
Jacobi-Matrix von f .

• Mit der Methode

def apply (t, dt, y_old)

sollen die durch die Iterationsvorschrift festgelegten Schritte des Verfahrens ausgeführt
werden können. Dabei bezeichnen t sowie dt den Zeitpunkt tk sowie die Schrittweite ∆t
des aktuellen Zeitschritts und y_old entspricht der Approximationen yk. Rückagbewert
dieser Funktion ist die Approximation zum neuen Zeitpunkt yk+1.
Das für das implizite Euler-Verfahren benötigte Lösen eines Gleichungssystem kann von
bereits existierenden python Paketen übernommen werden. Zum Beispiel eignet sich die
Funktion root1 des Pakets scipy.optimization2 dafür.

Aufgabe 4 (Mathematisches Pendel, Computermodell) (5 Punkte)
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= 0 auf I := [0, T ], T ∈ R+, (2a)

ϕ(0) = ϕ0, ϕ0 ∈ R, (2b)
ϕ′(0) = v0, v0 ∈ R. (2c)

Um das mathematische Pendel (2) zu simulieren, wollen wir für dieses ein Computermodell
herleiten. Mit dem Ansatz ϕ′(t) = v(t) lässt sich (2) in ein System von zwei gewöhnlichen
Differentialgleichungen 1. Ordnung mit zugehörigen Anfangswerten transformieren:

ϕ′(t) = v(t), v′(t) = a auf I, (3a)
ϕ(0) = ϕ0, v(0) = b. (3b)

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.root.html#scipy.
optimize.root

2https://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html
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(a) Bestimmen Sie die fehlenden Terme a und b. Bestimmen Sie das resultierende AWP (3) für
das explizite und implizite Euler-Verfahren. Schreiben Sie zusätzlich das Gleichungssystem
auf, das beim impliziten Eulerverfahren gelöst werden muss.

(b) Implementieren Sie beide resultierende Computermodell in python. Benutzen Sie dazu
Ihre Implementierungen aus Aufgabe 3. Speichern Sie für jeden Zeitschritt tk den dazu
gehörigen Auslenkungswinkel und Geschwindigkeit für eine spätere Visualisierung.

(c) Führen Sie mit Ihrem Programm verschiedene Simulationen durch und visualisieren Sie
die Ergebnisse. Für die Darstellung eignet sich das python Paket matplotlib3. Benutzen
Sie dabei den Anfangswert v0 = 0 und die maximale Zeit T = 12.0.

(i) Wählen Sie ϕ0 = 0.5 als festen Anfangswert.
Wählen Sie verschiedene Schrittweiten ∆t = 2−i, i = 4, 5, ..., 10 .
Plotten Sie den Auslenkungswinkel, die Geschwindigkeit und die gesamte Energie
Ihrer Simulation. Die Daten der verschiedenen Schrittweiten sollen in einer gemein-
samen Grafik dargestellt werden. Erörtern Sie Ihre Ergebnisse.

(ii) Wählen Sie die beiden verschiedenen Anfangswerte ϕ0 = 0.5 und ϕ0 = 1.0.
Wählen Sie ∆t = 2−15 als feste Schrittweite.
Plotten Sie den Auslenkungswinkel, die Geschwindigkeit und die gesamte Energie
Ihrer Simulation. Die Daten der verschiedenen Schrittweiten sollen in einer gemein-
samen Grafik dargestellt werden. Erörtern Sie Ihre Ergebnisse.

3https://matplotlib.org/
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