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Introduction

In [10], we have introduced Hodge operators using diagonalizable σ-hermitian forms 

on vector spaces over a field 𝑭 of arbitrary characteristic; here σ is an automorphism 

of 𝑭 with σ2 = id, we allow σ = id (in fact, we concentrate on that case in the present 

paper). If the dimension of that space is an even number n = 2ℓ then these operators help 

to understand exceptional homomorphisms between groups of semi-similitudes; these 

homomorphisms can be interpreted as representations of the group of semi-similitudes 

of the given form on the ℓ-th exterior power of the space, where the latter is turned into 

a module over an algebra 𝑲ℓ generated by the Hodge operator (see [10, Sect. 2]). That 

algebra turns out to be a composition algebra if σ ̸= id or if char 𝑭 ̸= 2, but it will be 

inseparable if σ = id and char 𝑭 = 2: in that case, we obtain 𝑲ℓ
∼ = 𝑭 [X]/(X2 − δ), for 

some δ ∈ 𝑭 .

In the case where σ = id and the characteristic is two, the forms in question are not 

the ones that lead to classical groups: we then use a bilinear form that is symmetric 

but not alternating (see 1.2 below); the definitions of classical groups (i.e., symplectic, 

unitary, or orthogonal groups) in characteristic two employ non-degenerate forms that 

are either alternating, or σ-hermitian with σ ̸= id, or quadratic forms.

Therefore, the inseparable case is treated in a cursory way only in [10]. However, it 

leads to phenomena that appear to be interesting, if only as a marked contrast to the 

results in [10]: for instance, the orthogonal group with respect to the bilinear form may 

be a simple group (see 3.2.a below) or abelian (see 3.2.b), or it may act on a submodule 

of the exterior power with a rather large nilpotent kernel, and inducing a simple group 

on that submodule (see 3.1). We treat this inseparable case in a more detailed manner in 

the present notes, with a focus on ℓ = 2 (and n = 4) because interesting phenomena are 

already apparent in this dimension (and the Klein quadric provides some extra geometric 

intuition).

1. Symmetric bilinear and diagonal quadratic forms in characteristic two

We recall basic facts about forms over fields of characteristic two, and fix some nota-

tion.

1.1  Notation. Let 𝑭 be any field of characteristic 2, let V be a vector space of dimension n

over 𝑭 , and let h : V × V → 𝑭 be a non-degenerate symmetric bilinear form. Moreover, 

assume that there exists an orthogonal basis v1, . . . , vn with respect to h (see 1.2 below).

As dim V is assumed to be finite, our assumption that h be not degenerate is equivalent 

to the fact that (by a slight abuse of notation) we may view h as a linear isomorphism 

onto the dual space V ∨,

h : V → V ∨ : v ↦→ h(v, −) 
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see e.g. [9, Ch. I, §2]. Consider now the exterior algebra 
⋀︁

V , cf. [8, VI 9]. We note that 
⋀︁

is a functor on vector spaces and (semi)linear maps, cp. [10, 1.6]. Moreover, there is a 

natural isomorphism (
⋀︁

V )∨ ∼ = 
⋀︁

(V ∨), so we may write unambiguously 
⋀︁

V ∨. Explicitly, 

we have ⟨f1 ∧ · · · ∧ fℓ, w1 ∧ · · · ∧ wℓ⟩ = det(⟨fi, wk⟩) for fi ∈ V ∨ and wk ∈ V , see [11, 

I.5.6] or1 [2, § 8, Thme. 1, p. 102]. Applying the functor 
⋀︁

to h : V → V ∨, we obtain 
⋀︁

h :
⋀︁

V → ⋀︁

V ∨; we interpret this as a bilinear form 
⋀︁

h on the exterior algebra 
⋀︁

V . 

Using the explicit formula above, we find

⋀︁

h(v1 ∧ · · · ∧ vℓ, w1 ∧ · · · ∧ wℓ) =
⋀︁ℓ

h(v1 ∧ · · · ∧ vℓ, w1 ∧ · · · ∧ wℓ) = det(h(vi, wj)).

In particular, the form 
⋀︁ℓ

h is symmetric because transposition does not change the 

determinant.

The quadratic form q := qh : V → 𝑭 : v ↦→ h(v, v) is a semilinear map, its companion is 

the Frobenius endomorphism φ : 𝑭 → 𝑭 : x ↦→ x2, considered as an isomorphism from 𝑭

onto the field 𝑭 □ := {x2 | x ∈ 𝑭 } of squares. The kernel of q consists of all vectors 

that are isotropic with respect to h. In particular, it contains V ⊥. For each vector space 

complement W for that kernel in V , the restriction of q to W is an injective map, and 

dim𝑭 W = dim𝑭 □ q(V ).

Let ΓL(V ) be the group of semilinear bijections of V onto itself. For γ ∈ ΓL(V ), 

let αγ ∈ Aut(𝑭 ) denote the companion of γ. In the spirit of Dieudonné’s notation, we 

consider the group

ΓO(V, h) :=
{︂

γ ∈ ΓL(V )
⃓

⃓

⃓
∃rγ ∈ 𝑭 × ∀v, w ∈ V : h(γ(v), γ(w)) = rγ αγ(h(v, w))

}︂

of semi-similitudes of the form h, the subgroup GO(V, h) := ΓO(V, h)∩GL(V ) of (linear) 

similitudes, and the group O(V, h) :=
{︂

γ ∈ GL(V )
⃓

⃓

⃓
∀v, w ∈ V : h(γ(v), γ(w)) = h(v, w)

}︂

of isometries. Note that Dieudonné would refer to the latter group as a unitary group, 

he reserved the term “orthogonal” for groups of isometries of quadratic forms.

For a quadratic form q : V → 𝑭 we have

ΓO(V, q) :=
{︂

γ ∈ ΓL(V )
⃓

⃓

⃓
∃rγ ∈ 𝑭 × ∀v ∈ V : q(γ(v)) = rγ αγ(q(v))

}︂

,

GO(V, q) := ΓO(V, q) ∩ GL(V ), and O(V, q) :=
{︂

γ ∈ GL(V )
⃓

⃓

⃓
∀v ∈ V : q(γ(v)) = q(v)

}︂

.

If the form in question is not zero then the multiplier rγ of a linear similitude γ is 

determined by γ, and γ ↦→ rγ is a group homomorphism.

The following result dates back to [1, Th. 6, p. 392], see also [5, I § 10, p. 20 with I § 8, 

p. 15] or [15, Theorem 6.3.1]. For the reader’s convenience, we include a proof.

1.2  Lemma. Let h : V × V → 𝑭 be a symmetric bilinear form on a vector space V of 

finite dimension n over a field 𝑭 with char 𝑭 = 2. Let k := dim𝑭 □ qh(V ).

1 The treatment in [2] is quite different from that in later editions [4].
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a. If h is non-zero then there exists an orthogonal basis for V with respect to h if, and 

only if, the form h is not alternating, i.e., if there exists v ∈ V with qh(v) ̸= 0.

b. If h is not alternating then there exists an orthogonal basis v1, . . . , vn of V such that 

qh(v1), . . . , qh(vk) is an 𝑭 □-basis for qh(V ).

Proof. We abbreviate q := qh as in 1.1. If there exists an orthogonal basis then the Gram 

matrix with respect to that basis is diagonal, and will be zero if the form is alternating. 

Conversely, assume that there exists v ∈ V with q(v) ̸= 0. If V ⊥ ̸= {0}, we choose any 

basis for V ⊥, and any vector space complement W to V ⊥ with v ∈ W . The restriction 

of h to W is not degenerate, and not alternating. It suffices to show that there is an 

orthogonal basis for W . Assume that w1, . . . , wk are pairwise orthogonal vectors in W

with q(wi) ̸= 0. Then these vectors are linearly independent, the restriction of h to their 

span Wk is not degenerate, and W ⊥

k ∩ W is a complement to Wk in W .

We proceed by induction on dim(W ⊥

k ∩ W ): If the restriction of h to W ⊥

k ∩ W is 

either zero or not alternating, we apply the induction hypothesis. It remains to study 

the case where there exist x, y ∈ W ⊥

k ∩ W with h(x, y) = 1 and q(x) = 0 = q(y). Put 

wk+1 := wk + q(wk)y, wk+2 := wk + x + q(wk)y, and w̃k := wk + x. Straightforward 

computation yields q(wk+1) = q(wk+2) = q(w̃k) = q(wk) ̸= 0, and that the vectors 

w̃k, wk+1, wk+2 ∈ {w1, . . . , wk−1}⊥ are pairwise orthogonal.

So w1, . . . , wk−1, w̃k, wk+1, wk+2 is an orthogonal basis for Wk + 𝑭 x + 𝑭 y. Applying 

the induction hypothesis to (Wk + 𝑭 x + 𝑭 y)⊥ ∩ W finishes the proof of assertion a.

For assertion b, we choose any orthogonal basis and re-order it in such a way that the 

values of q at the first k basis vectors are linearly independent over 𝑭 □. □

1.3  Lemma. Let h : V ×V → 𝑭 be a symmetric bilinear form over a field 𝑭 with char 𝑭 =

2, and let q := qh : V → 𝑭 : x ↦→ h(x, x) be the corresponding quadratic form. If q is 

anisotropic then the groups O(V, q) and O(V, h) are both trivial, and each one of the sets 

𝑳 := GO(V, q) ∪ {0} and 𝑳h := GO(V, h) ∪ {0} forms a subfield of the endomorphism 

ring End𝑭 (V ).

Putting r0 := 0, we extend the multiplier map to a homomorphism r : 𝑳 → 𝑭 of fields. 

This yields isomorphisms from 𝑳 and from 𝑳h, respectively, onto subfields of 𝑭 .

The set q(V ) is a vector space over the field r(𝑳). If 1 ∈ q(V ) then r(𝑳) ⊆ q(V ).

Proof. Clearly we have O(V, h) ≤ O(V, q) and GO(V, h) ≤ GO(V, q). Interpreting q as a 

semi-linear map from V to the vector space 𝑭 over 𝑭 □ we see that q is injective by our 

assumption that q is anisotropic. Therefore, the group O(V, q) is trivial, and so is the 

subgroup O(V, h). It follows that the multiplier map r : GO(V, q) → 𝑭 × is injective. In 

particular, the group GO(V, q) is isomorphic to a subgroup of 𝑭 ×, and thus commutative.

The set 𝑳 := GO(V, q) ∪ {0} ⊆ End𝑭 (V ) is closed under multiplication, and each 

member of 𝑳∖{0} has a multiplicative inverse. We extend the multiplier map by putting 

r0 := 0; this extension is still multiplicative.
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For λ, μ ∈ 𝑳, we note q
(︁

(λ + μ)(v)
)︁

= q
(︁

λ(v) + μ(v)
)︁

= q
(︁

λ(v)
)︁

+ q
(︁

μ(v)
)︁

= rλq(v) +

rμq(v) = (rλ +rμ)q(v). So 𝑳 is closed under addition, and the multiplier map is additive.

Now assume λ, μ ∈ GO(V, h) ≤ GO(V, q); we need to show λ + μ ∈ 𝑳h := GO(V, h) ∪
{0}. The multiplier (rλ)2 of λ2 ∈ GO(V, h) is also the multiplier of rλ id ∈ GO(V, h), so 

injectivity of the multiplier map yields λ2 = rλ id. Using char 𝑭 = 2 and commutativity 

of GO(V, h), we obtain

h
(︁

λ(v), μ(w)
)︁

+ h
(︁

μ(v), λ(w)
)︁

= r−1
λ h

(︁

λ2(v), λμ(w)
)︁

+ r−1
μ h

(︁

μ2(v), μλ(w)
)︁

= h
(︁

v, λμ(w)
)︁

+ h
(︁

v, μλ(w)
)︁

= 0.

This yields h
(︁

(λ + μ)(v), (λ + μ)(w)
)︁

= h
(︁

λ(v), λ(w)
)︁

+ h
(︁

λ(v), μ(w)
)︁

+ h
(︁

μ(v), λ(w)
)︁

+

h
(︁

μ(v), μ(w)
)︁

= rλ h(v, w) + rμ h(v, w) = (rλ + rμ) h(v, w), as required.

Finally, assume that there exists v ∈ V with q(v) = 1. For λ ∈ GO(V, q), we obtain 

q(λ(v)) = rλq(v) = rλ, and q(V ) = {rλ | λ ∈ 𝑳} follows. □

Clearly, we have 𝑭 1 ≤ 𝑳h ≤ 𝑳, where 1 denotes the identity (matrix). It may well 

happen that 𝑭 1 ̸= 𝑳h ̸= 𝑳, see 3.4d below.

1.4  Remark. Let 𝑲 = 𝑭 + 𝑭 z be the local algebra of degree 2 over a field 𝑭 with 

char 𝑭 = 2, with z2 = 0. For a symmetric matrix S ∈ 𝑭 3×3, let g : 𝑲3 × 𝑲3 → 𝑲

and ḡ : 𝑭 3 × 𝑭 3 → 𝑭 , respectively, be the bilinear forms with Gram matrix S. Every 

matrix B ∈ 𝑲3×3 can be written as B = A + zX with A, X ∈ 𝑭 3×3. Computing 

B
⊺
SB = A

⊺
SA + z(A

⊺
SX + X

⊺
SA) we see that B belongs to O(𝑲3, g) precisely if 

A ∈ O(𝑭 3, ḡ) and A
⊺
SX is symmetric.

E.g., for S =

(︃

1 0 0
0 1 0
0 0 c

)︃

with c ∈ 𝑭 ∖ 𝑭 □ we obtain O(𝑭 3, ḡ) =
{︂

(︁

1+aJ 0
0 1

)︁

⃓

⃓

⃓
a ∈ 𝑭

}︂

, 

where J :=
(︁

1 1
1 1

)︁

, and then O(𝑲3, g) =
{︂(︂

(1+aJ)(1+zS) zc(1+aJ)v

zv
⊺

1+zd

)︂ ⃓

⃓

⃓
a, d ∈ 𝑭 , v ∈ 𝑭 2, 

S = S
⊺ ∈ 𝑭 2×2

}︂

.

In Section 3, we will repeatedly need the following.

1.5  Lemma. Let 𝑲 be a commutative local ring with 1 + 1 = 0 in 𝑲, and let SL2(𝑲) :=
{︂

(︁

a b

c d

)︁

⃓

⃓

⃓ a, b, c, s ∈ 𝑲, ad − bc = 1
}︂

. We write 𝒊 :=
(︁

0 1
1 0

)︁

, Lx :=
(︁

1 0
x 1

)︁

, Ux :=
(︁

1 x

0 1

)︁

,

L̂x =

(︄

1 + x 0 x
0 1 0
x 0 1 + x

)︄

, Ûx =

(︄

1 + x x 0
x 1 + x 0
0 0 1

)︄

, and T :=

(︄

1 1 1
1 1 0
1 0 1

)︄

.

The bilinear forms g and g′ on 𝑲3 are given by g(x, y) = x1y1 + x2y3 + x3y2 and 

g′(x, y) =
∑︁3

k=1 xkyk, respectively.

a. The set {Lx | x ∈ 𝑲} ∪ {Ux | x ∈ 𝑲} generates SL2(𝑲).
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b. The set {L̂x | x ∈ 𝑲} ∪ {Ûx | x ∈ 𝑲} generates a group Σ̂ isomorphic to SL2(𝑲). 

Indeed, T −1L̂xT =
(︂

1 0
0 Lx

)︂

, T −1ÛxT =
(︂

1 0
0 Ux

)︂

, and T −1 Σ̂ T = Σ :=
{︂

(︁

1 0
0 A

)︁

⃓

⃓

⃓
A ∈

SL2(𝑲)
}︂

.

c. Now assume that the maximal ideal M of 𝑲 has the property MM = {0}. 

Then Ξ :=
{︂(︂

1 u
⊺

𝒊

u 1

)︂ ⃓

⃓

⃓
u ∈ M2

}︂

and Θ :=
{︂

(︁

a 0
0 1

)︁

⃓

⃓

⃓
a ∈ 1 + M

}︂

are subgroups, and 

ΞΘ is an elementary abelian 2-group. The groups Ξ and Θ are both normalized by Σ, 

the semi-direct product

ΞΘΣ =

{︃(︃

a au
⊺
𝒊 C

u C

)︃ ⃓

⃓

⃓

⃓

a ∈ 1 + M, u ∈ M2, C ∈ SL2(𝑲)

}︃

equals O(𝑲3, g), and T (ΞΘΣ)T −1 = O(V, g′).

Here M2 denotes the set of columns with two entries from M .

Proof. Assertion a is well known ([7, Th. 4.3.9], see [16, p. 22] for the case where 𝑲 is a 

field). Since matrix algebra over a local ring is less popular, we provide a direct argument 

(actually, in a form that works for every local ring): Let A =
(︁

a b

c d

)︁

∈ SL2(𝑲). Then a

and c cannot both be non-invertible. If a is invertible, then

(︃

1 0
a−1(c − 1) 1

)︃ (︃

1 a − 1
0 1

)︃ (︃

1 0
1 1

)︃ (︃

1 a−1(1 + b − a)
0 1

)︃

=

(︃

a b
c d

)︃

.

If c is invertible, then

(︃

1 c−1(a − 1)
0 1

)︃ (︃

1 0
c 1

)︃ (︃

1 c−1(d − 1)
0 1

)︃

=

(︃

a b
c d

)︃

.

Assertion b follows by direct computations.

Now assume MM = {0}. Then M is the kernel of the Frobenius endomor-

phism, and 𝑲□ = {x2 | x ∈ 𝑲} ∼ = 𝑲/M is a field. We interpret the quadratic form 

q := qg as a semilinear map from 𝑲3 to the vector space 𝑲 over 𝑲□. The ker-

nel of q is {(x1, x2, x3)
⊺ ∈ 𝑲3 | x2

1 = 0} = {(x1, x2, x3)
⊺ ∈ 𝑲3 | x1 ∈ M}, and contains 

{(0, x2, x3)
⊺ | x2, x3 ∈ 𝑲}. That kernel is invariant under each isometry in O(V, g).

We note C
⊺
𝒊C = (det C) 𝒊 for each matrix C ∈ 𝑲2×2 and v

⊺
𝒊 v = 0 for each v ∈ 𝑲2. 

For any a ∈ 𝑲, any u, w ∈ 𝑲2, and C ∈ 𝑲2×2 we write w
⊺

= (w1, w2) and consider the 

matrix

Aa,u,w,C :=

(︃

a w
⊺

u C

)︃

.

If the kernel of q is invariant under that matrix, we have 0 = q
(︁

Aa,u,w,C(0, 1, 0)
⊺)︁

= w2
1

and also 0 = q
(︁

Aa,u,w,C(0, 0, 1)
⊺)︁

= w2
2, so w ∈ M2. Then ww

⊺
= 0.
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Now Aa,u,w,C ∈ O(V, g) yields the conditions a2 = 1, wa = C
⊺
𝒊 u, and C

⊺
𝒊 C = 𝒊. 

This leads to a−1 = a ∈ 1 + M , det C = 1, and u ∈ M2.

Conversely, we have Aa,u,w,C ∈ O(V, g) for each choice of a ∈ 1 + M , C ∈ SL2(𝑲), 

u ∈ M2 and w := C
⊺
𝒊 ua. So

O(V, g) =

{︃(︃

a au
⊺
𝒊 C

u C

)︃ ⃓

⃓

⃓

⃓

a ∈ 1 + M, C ∈ SL2(𝑲), u ∈ M2

}︃

.

It is easy to see that both Θ := {Aa,0,0,1 | a ∈ 1 + M} and Ξ are elementary abelian 

2-groups. A straightforward calculation yields that they centralize each other, and that 

they are normalized by Σ. Then ΘΞ is an elementary abelian subgroup, and normalized 

by Σ, as well. Thus O(V, g) = ΞΘΣ follows.

We note T
⊺

= T and T 2 =
(︁

1 0
0 𝒊

)︁

, so T 2 is the Gram matrix for g. So T O(V, g) T −1

equals the group O(V, g′) of isometries with respect to the form with Gram matrix 

(T −1)
⊺
T 2T −1 = 1. □

2. The Hodge operator in characteristic two

Fundamental definitions and results about Hodge operators have been worked out in 

some detail in [10]. We repeat the fundamental facts (with simplifications due to the 

concentration on a special case) and refer to [10] for details and proofs.

2.1  The Pfaffian form. Recall that dim
⋀︁n

V = 1 if dim V = n. We fix an isomorphism 

b :
⋀︁n

V → 𝑭 . For each positive integer ℓ ≤ n the map b induces an isomorphism 

Pf :
⋀︁n−ℓ

V →
⋀︁ℓ

V ∨ given by

Pf(v1 ∧ · · · ∧ vn−ℓ)(w1 ∧ · · · ∧ wℓ) = b(v1 ∧ · · · ∧ vn−ℓ ∧ w1 ∧ · · · ∧ wℓ) .

This is the Pfaffian form, see [8, VI 10 Problems 23–28, VIII 12 Problem 42]. As char 𝑭 =

2, the resulting bilinear map Pf on 
⋀︁

V is symmetric,

Pf(v1 ∧ · · · ∧ vn−ℓ, w1 ∧ · · · ∧ wℓ) = Pf(w1 ∧ · · · ∧ wℓ, v1 ∧ · · · ∧ vn−ℓ) .

If n = 2ℓ is even then Pf(v1 ∧ · · · ∧ vℓ, v1 ∧ · · · ∧ vℓ) = 0 holds for each v1 ∧ · · · ∧ vℓ, so 

Pf is an alternating form on 
⋀︁ℓ

V .

2.2  Remarks. For n = 4 and ℓ = 2 we are dealing with the space 
⋀︁2

𝑭 4 that carries the 

Klein quadric. The quadratic form Pq defining the Klein quadric is also referred to as a 

Pfaffian form (cf. [6] and [14] where this form is denoted by q), and Pf is the polar form 

of that quadratic form. Under the present assumption char 𝑭 = 2, the polar form Pf

carries less information than the quadratic form Pq; in fact, for any diagonal quadratic 

form k (i.e., such that the polar form of k is zero) the sum Pq + k also has Pf as polar 

form. Note that Pf is alternating because it is the polar form of a quadratic form in 

characteristic two.
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If one interprets the elements of 
⋀︁2

𝑭 4 as alternating matrices then there exists a 

scalar s ∈ 𝑭 × such that Pq(X)2 = s det X holds for each X ∈
⋀︁2

𝑭 4, cf. [3, § 5 no. 2, 

Prop. 2, p. 84]; the scalar s reflects the choice of basis underlying that interpretation.

We identify x12v1 ∧ v2 + x13v1 ∧ v3 + x14v1 ∧ v4 + x23v2 ∧ v3 + x24v2 ∧ v4 + x34v3 ∧ v4

with

X =

⎛

⎜

⎝

0 x12 x13 x14

−x12 0 x23 x24

−x13 −x23 0 x34

−x14 −x24 −x34 0

⎞

⎟

⎠

and compute det X = (x12x34 − x13x24 + x14x23)2; up to a scalar (viz., the value 

b(v1 ∧ v2 ∧ v3 ∧ v4) above), the value of Pq at X is obtained as x12x34 −x13x24 +x14x23, 

and the polar form of Pq maps (X, Y ) to the corresponding scalar multiple of x12y34 +

x13y24 + x14y23 + x23y14 + x24y13 + x34y12.

See [16, 12.14] for an interpretation of Pq in terms of the exterior algebra.

2.3  The Hodge operator. We now consider the composite

𝑱 := Pf−1 ◦
⋀︁

h :
⋀︁ℓ

V

⋀︁

h

∼ = 

⋀︁ℓ
V ∨

∼ = 

Pf−1
⋀︁n−ℓ

V .

This semilinear isomorphism is the Hodge operator. It depends, of course, on h and on b

but not on the choice of basis.

2.4  Explicit computation. Suppose that v1, . . . , vn is an orthogonal basis of V . For 
⋀︁ℓ

V

we use the basis vectors vi1
∧ · · · ∧ viℓ

with ascending i1 < · · · < iℓ ≤ n. Then 
⋀︁ℓ

h(v1 ∧ · · · ∧ vℓ, −) is a linear form on 
⋀︁ℓ

V which annihilates each one of those ba-

sis vectors, except for v1 ∧ · · · ∧ vℓ; in fact

⋀︁ℓ
h(v1 ∧ · · · ∧ vℓ, v1 ∧ · · · ∧ vℓ) = h(v1, v1) · · · h(vℓ, vℓ) .

In other words: 
⋀︁ℓ

h is again diagonalizable. It then also follows that 
⋀︁ℓ

h is not degener-

ate. The linear form Pf(vℓ+1 ∧ · · · ∧vn) annihilates the same collection of basis ℓ-vectors, 

and

Pf(vℓ+1 ∧ · · · ∧ vn, v1 ∧ · · · ∧ vℓ) = b(v1 ∧ · · · ∧ vn) .

Therefore

𝑱(v1 ∧ · · · ∧ vℓ) = vℓ+1 ∧ · · · ∧ vn

h(v1, v1) · · · h(vℓ, vℓ)

b(v1 ∧ · · · ∧ vn) 
.

Note that this last formula is correct only if v1, . . . , vn is an orthogonal basis, and cannot 

be used if v1 ∧ · · · ∧ vℓ corresponds to a subspace U of V such that the restriction of h

to U is degenerate.
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2.5  The square of the Hodge operator. Let H be the Gram matrix of h with respect to 

the orthogonal basis v1, . . . , vn. The square of 𝑱 is a linear automorphism of 
⋀︁ℓ

V , and 

we find that

𝑱2 = δℓ 1 where δℓ := det(H) 
b(v1∧···∧vn)2 .

Recall that det(H) depends on the choice of basis; the invariant would be the square 

class disc(h) ∈ 𝑭 ×/𝑭 ⊠ of det(h(vi, vj)). (Here 𝑭 ⊠ denotes the multiplicative group of 

the field 𝑭 □ := {s2 | s ∈ 𝑭 } of all squares in 𝑭 .) However, the whole expression depends 

only on h and b. Replacing the isomorphism b :
⋀︁n

V → 𝑭 changes 𝑱 by a factor and 𝑱2

by the square of that factor. In particular, the isomorphism type of the algebra 𝑲ℓ

introduced in 2.7 below does not depend on the choice of b.

2.6  Lemma. For all x, y ∈
⋀︁ℓ

V we have

a. Pf(𝑱(x), y) =
⋀︁ℓ

h(x, y),

b. Pf(𝑱(x), 𝑱(y)) = δℓ Pf(y, x),

c.
⋀︁ℓ

h(𝑱(x), y) = δℓ Pf(x, y),

d.
⋀︁ℓ

h(𝑱(x), 𝑱(y)) = δℓ

⋀︁ℓ
h(x, y).

From now on, assume n = 2ℓ. Then 𝑱 is an 𝑭 -linear endomorphism of 
⋀︁ℓ

V . We are 

going to use 𝑱 to give 
⋀︁ℓ

V the structure of a right module over an associative algebra 

of dimension 2 over 𝑭 .

2.7  The algebra 𝑲𝓵. Take δℓ = det(H) 
b(v1∧···∧vn)2 as in 2.5 and put 𝑲ℓ := 𝑭 [𝒋ℓ]/(𝒋2

ℓ − δℓ).

2.8  Definition. For v ∈
⋀︁ℓ

V we put v 𝒋ℓ := 𝑱(v). In this way, the space 
⋀︁ℓ

V becomes 

an O(V, h)-𝑲ℓ-bimodule, i.e., it becomes a right module over 𝑲ℓ and O(V, h) acts 𝑲ℓ-

linearly from the left. Choosing an orthogonal basis v1, . . . , vn for V with a fixed ordering, 

we obtain a basis B for 
⋀︁ℓ

V consisting of all vj1
∧· · ·∧vjℓ

where (j1, . . . , jℓ) is an increasing 

sequence of length ℓ in {1, . . . , n}. The sequences with j1 = 1 form a subset B1 of B, 

and 𝑱 maps each element of B1 to one of B ∖ B1. Moreover, the set B1 forms a basis 

for the 𝑲ℓ-module 
⋀︁ℓ

V , showing that the latter is a free module.

2.9  The bilinear form on the module. We define g :
⋀︁ℓ

V × ⋀︁ℓ
V → 𝑲ℓ by

g(u, v) :=
⋀︁ℓ

h(u, v) +
⋀︁ℓ

h(u, v𝒋ℓ) 𝒋
−1
ℓ =

⋀︁ℓ
h(u, v) + 𝒋ℓ (−1)ℓ Pf(u, v) ;

see 2.6 for the description on the right hand side. This expression is 𝑲ℓ-bilinear.

Note that 𝑲ℓ is not a field, in general: we need the more general concept of bilinear 

forms over rings.

2.10  Proposition. The form g is diagonalizable.
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For a general proof (and a general formula) see [10, 2.7]. Actually, if 𝑲ℓ is a field 

(of characteristic two, and σ = id by our assumptions) it suffices to note that g is not 

alternating, see 1.2. For the applications in Section 3 below, we give a special statement 

explicitly:

2.11  Example. Let v1, v2, v3, v4 be an orthogonal basis for V , with respect to h. Then 

w2 := v1 ∧ v2, w3 := v1 ∧ v3, w4 := v1 ∧ v4 form an orthogonal basis for the free 

𝑲2-module 
⋀︁2

V , with respect to g. Explicitly, we have g(w2, w2) = h(v1, v1)h(v2, v2), 

g(w3, w3) = h(v1, v1)h(v2, v2), and g(w4, w4) = h(v1, v1)h(v4, v4).

From the definition of g it is clear that O(V, h) preserves g and that the group ΓO(V, h)

of semi-similitudes (see 1.1) acts by semi-similitudes of g, see [10, 1.8]. For ℓ = 1
2 dim(V )

we have thus constructed a homomorphism ηℓ : ΓO(V, h) → ΓO(
⋀︁ℓ

V, g).

2.12  Lemma. The kernel of ηℓ is trivial.

Proof. That kernel consists of all scalar multiples s1 of the identity 1, where s2 = 1. 

Since char 𝑭 = 2, this yields s = 1. □

We will call 𝑲ℓ split whenever it contains divisors of zero. This extends the established 

terminology for composition algebras. Recall that 𝑲ℓ is split precisely if δℓ is a square: 

δℓ = s2 for some s ∈ 𝑭 × (and this happens precisely if h has discriminant 1).

In that case, we may assume s = 1 without loss of generality. In fact, if we replace our 

isomorphism b :
⋀︁n

V → 𝑭 by sb then the Hodge operator 𝑱 is replaced by 𝑱 s−1 : X ↦→
𝑱(X)s−1, and we have (𝑱 s−1)2 = 1 while the algebra 𝑲ℓ remains the same. If s = 1

then z := 1+𝒋ℓ ∈ 𝑲ℓ satisfies z2 = 2z = 0, and is nilpotent. Thus 𝑲ℓ
∼ = 𝑭 [X]/(X2) is a 

local ring if 𝑲ℓ is split. Recall that a local ring is a ring in which the set of non-invertible 

elements is closed under addition (we allow the case where that set consists of 0 alone).

2.13  Lemma. Let W :=
⋀︁ℓ

V , and assume that 𝑲ℓ is split.

a. The maximal ideal in 𝑲ℓ is generated by a nilpotent element z. The submodule Wz

and the quotient module W/Wz are isomorphic via ρz : w + Wz ↦→ wz.

b. The restriction of the form g to the subspace Wz is trivial.

c. The 𝑲ℓ-submodule Wz is invariant under η(ΓO(V, h)). Thus we obtain a homomor-

phism ηo
ℓ : ΓO(V, h) → ΓL(Wz).

d. The group induced by ker ηo
ℓ on W is an elementary abelian 2-group, acting trivially 

on W/Wz.

Proof. The first three assertions are taken from [10, 3.6]. For the last assertion, we note 

that elements of ker ηo
ℓ act trivially on W/Wz because ρz is a module homomorphism. 

So ker ηo
ℓ is isomorphic to a subgroup of Hom𝑭 (W/Wz, Wz). □
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The precise structure of O(V, h) and ker ηo
ℓ depends on the defect of the form h.

3. The four-dimensional cases

We focus on the case where ℓ = 2 and n = 2ℓ = 4, and write 𝑲 := 𝑲2. Either 𝑲

splits and is isomorphic to the local algebra 𝑭 [X]/(X2), or we have an inseparable 

quadratic field extension 𝑲|𝑭 . Recall from 1.1 that q : V → 𝑭 : x ↦→ h(x, x) is a φ-

semilinear map, where 𝑭 is considered as a vector space over the subfield 𝑭 □ of squares, 

and φ : 𝑭 → 𝑭 □ : s ↦→ s2 is the Frobenius endomorphism. Note that O(V, h) is con-

tained in O(V, q). We distinguish cases according to dim𝑭 □ q(V ) ∈ {1, 2, 3, 4}; recall that 

dim𝑭 ker q = 4 − dim𝑭 □ q(V ) ∈ {3, 2, 1, 0} is called the defect of q. At several places we 

will use the fact that the orthogonal group of an anisotropic diagonal quadratic form is 

trivial if the ground field has characteristic 2; cf. [5, § 16, p. 35]. Recall from 2.13 that 

the restriction g|W z×W z is trivial if z is nilpotent (of course, this is of interest only if 𝑲

splits).

We use the standard basis e1, e2, e3, e4 for V = 𝑭 4, and write W :=
⋀︁2

V .

We will also use the basis b1 := (1, 1, 1, 1)
⊺

= e1+e2+e3+e4, b2 := (1, 1, 0, 0)
⊺

= e1+e2, 

b3 := (1, 0, 1, 0)
⊺

= e1 + e3, b4 := (0, 0, 0, 1)
⊺

= e4.

3.1  Proposition. If q has defect 3, then 𝑲 splits and O(V, h) ∼ = 
(︁

SL2(𝑭 ) ⋉ 𝑭 2
)︁

×𝑭 . The 

normal subgroup Ξ ∼ = 𝑭 2 × 𝑭 is the kernel of the action on Wz.

Note that 𝑲 = 𝑭 + 𝑭 z ∼ = 𝑭 [X]/(X2) is not a field; the subfield 𝑭 < 𝑲 is the 

image under the endomorphism ψ : 𝑲 → 𝑲 : r + sz ↦→ r. Using matrix descriptions with 

respect to the 𝑲-basis b1 ∧ b4, b2 ∧ b4, b3 ∧ b4, we apply ψ to each matrix entry and 

obtain an endomorphism of the group GL3(𝑲). Let Ψ ∼ = GL3(𝑭 ) be the image under 

that endomorphism; in the chosen coordinates, this subgroup Ψ < GL3(𝑲) consists of 

all invertible 3 × 3 matrices with entries from 𝑭 .

We obtain SL2(𝑭 ) ∼ = ηo(O(V, h)) = O(W, g) ∩ Ψ < O(W, g) ∼ = SL2(𝑲) ∼ = 

SL2(𝑭 ) × SL2(𝑭 ). Every multiplier is a square, the group of similitudes is GO(V, h) =

𝑭 × O(V, h).

Proof. If q has defect 3 then dim𝑭 □ q(V ) = 1 and we may (upon replacing h by a scalar 

multiple of h, cp. 1.2b) assume that h(x, y) = x
⊺
y is the description in coordinates x, y

with respect to the standard basis. This form h has Witt index 2. In coordinates v, w

with respect to the basis b1, b2, b3, b4 above, it is given by the map h̃, with

h̃(v, w) := v
⊺

⎛

⎜

⎜

⎜

⎝

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 1

⎞

⎟

⎟

⎟

⎠

w = v1w4 + v2w3 + v3w2 + v4w1 + v4w4 .

The orthogonal group O(V, h̃) leaves the quadratic form h̃(v, v) = v2
4 invariant. Thus it 

fixes the linear form with matrix (0, 0, 0, 1), and using suitable block matrices we obtain
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O(V, h̃) ≤
{︃(︃

A x
0 a

)︃ ⃓

⃓

⃓

⃓

a ∈ 𝑭 ×, A ∈ GL3(𝑭 ), x ∈ 𝑭 3

}︃

.

Now one computes easily that

O(V, h̃) =

⎧

⎨

⎩

⎛

⎝

1 t
⊺
𝒊 c

0 B Bt
0 0 1

⎞

⎠

⃓

⃓

⃓

⃓

⃓

⃓

B ∈ SL2(𝑭 ), t ∈ 𝑭 2, c ∈ 𝑭

⎫

⎬

⎭

where 𝒊 :=
(︁

0 1
1 0

)︁

.

Note that the elements with trivial B form an elementary abelian subgroup Ξ. In fact, 

we have an isomorphism

ξ : 𝑭 2 × 𝑭 → Ξ : (t1, t2, t3) ↦→

⎛

⎜

⎝

1 t2 t1 t3 + t1t2

0 1 0 t1

0 0 1 t2

0 0 0 1

⎞

⎟

⎠
.

The map ξ is 𝑭 -linear if we let the scalars act via the rule (t1, t2, t3) · s := (t1s, t2s, t3s2). 

In particular, the dimension of 𝑭 2 × 𝑭 ∼ = Ξ becomes 2 + dim𝑭 □ 𝑭 which will be greater 

than 3 whenever the field 𝑭 is not perfect.2 The group

Σ :=

{︄(︄

1 0 0
0 B 0
0 0 1

)︄

∈ GL4(𝑭 )

⃓

⃓

⃓

⃓

⃓

B ∈ SL2(𝑭 )

}︄

∼ = SL2(𝑭 )

of block matrices normalizes Ξ and acts in the expected way: it fixes ξ({0}2 × 𝑭 ) point-

wise and induces the usual action on the set

ξ
(︂{︂

(t1, t2, t1t2)
⃓

⃓

⃓
t1, t2 ∈ 𝑭

}︂)︂

=

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎝

1 t2 t1 0
0 1 0 t1

0 0 1 t2

0 0 0 1

⎞

⎟

⎠

⃓

⃓

⃓

⃓

⃓

⃓

⃓

t1, t2 ∈ 𝑭

⎫

⎪

⎬

⎪

⎭

.

However, that set is not a subgroup; there is no Σ-invariant subgroup complement to 

ξ({0}2 × 𝑭 ).

We fix the isomorphism b :
⋀︁4

V → 𝑭 in such a way that 𝑱(eπ(1) ∧ eπ(2)) =

eπ(3) ∧ eπ(4) for each permutation π of {1, 2, 3, 4}; recall that the standard basis 

e1, e2, e3, e4 is an orthonormal basis with respect to the form h in the present case. 

In particular, we now find δ = 1, the algebra 𝑲 splits, and z := 1 + 𝒋 is nilpotent.

Using the basis b1, . . . , b4 from above, we obtain the 𝑲-basis b1 ∧ b4, b2 ∧ b4, b3 ∧ b4

for W . With respect to that basis, the Gram matrix for g is 

(︃

1 0 0
0 0 1
0 1 0

)︃

. The elements 

of O(W, g) are thus described (with respect to the same basis) by the block matrices 
(︂

a u
⊺

𝒊 C

u C

)︂

, with a ∈ 1 + Fz, u ∈ (Fz)2, and C ∈ SL2(𝑲), see 1.5c. We observe that

2 This phenomenon also plays its role in the study of duality of symplectic quadrangles, cf. [12] and [13].
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Y1 := (b1 ∧ b4)z = (e1 ∧ e4 + e2 ∧ e4 + e3 ∧ e4)z = b1 ∧ b4 + b2 ∧ b3 ,

Y2 := (b2 ∧ b4)z = (e1 ∧ e4 + e2 ∧ e4)z = b1 ∧ b2 ,

Y3 := (b3 ∧ b4)z = (e1 ∧ e4 + e3 ∧ e4)z = b1 ∧ b3

form a basis for Wz.

Evaluating ξ(t1, t2, t3) ∈ Ξ at Y1, Y2, and Y3, we see that Ξ acts trivially on Wz, and 

then also acts trivially on W/Wz, see 2.13d. For B ∈ SL2(𝑭 ) we find that 

(︃

1 0 0
0 B 0
0 0 1

)︃

∈

Σ maps Y1a1 + Y2a2 + Y3a3 to Y1a1 + Y2a′
2 + Y3a′

3 with (a′
2, a′

3)
⊺

= B(a2, a3)
⊺
. In 

other words, the image of that element of Σ under ηo is described by the block matrix 
(︁

1 0
0 B

)︁

.

This action of SL2(𝑭 ) is an action by isometries of the 𝑭 -bilinear form k on Wz

defined by k(Y1a1 + Y2a2 + Y3a3, Y1x1 + Y2x2 + Y3x3) := a1x1 + a2x3 + a3x2; see 1.5c 

(applied with M = {0}). Note that Σ ∼ = SL2(𝑭 ) induces the full group O(Wz, k). 

However, the form k is not go because go ≡ 0, see 2.13.

The range q(V ) of the quadratic form q is just 𝑭 □. So every similitude of q has an 

element of 𝑭 ⊠ as multiplier, and belongs to 𝑭 × O(V, q). From GO(V, h) ≤ GO(V, q) it 

then follows that GO(V, h) = 𝑭 × O(V, h). □

3.2  Proposition. Assume that q has defect 2. In coordinates with respect to the 𝑲-basis 

e1∧e2, e1∧e3, e1∧e4, let Ψ ∼ = GL3(𝑭 ) be the subgroup of GL3(𝑲) consisting of matrices 

with entries from 𝑭 .

a. If 𝑲 is not split, then O(V, h) ∼ = SL2(𝑭 ) ∼ = η(O(V, h)) = O(W, g) ∩ Ψ < O(W, g) ∼ = 

SL2(𝑲). The field 𝑳h is an inseparable quadratic extension field of 𝑭 1.

b. If 𝑲 is split, then O(V, h) ∼ = 𝑭 3 is abelian, and its action on Wz is neither trivial 

nor faithful. We have O(W, g) ∼ = 𝑭 ×
(︁

(𝑭 3 × 𝑭 2) ⋊ 𝑭
)︁

. 

Again, the field 𝑳h is an inseparable quadratic extension field of 𝑭 1.

In both cases, we have 𝑳 = 𝑳h, and that field is a quadratic extension of 𝑭 1.

Proof. If dim𝑭 □ q(V ) = 2, we may assume h(x, y) = x1c1y1 + x2c2y2 + x3c3y3 + x4c4y4, 

where c3 and c4 lie in c1𝑭 □ + c2𝑭 □, and c1, c2 are linearly independent over 𝑭 □.

If c3 ∈ 𝑭 □c1 we may assume c3 = c1. If c3 / ∈ 𝑭 □c1 then there exist s, t ∈ 𝑭 with 

c2 = s2c1 + t2c3. Then T :=
(︂

tc3 s

sc1 t

)︂

is invertible, and T
⊺

(︂

c1 0
0 c3

)︂

T =
(︂

c∗

1
0

0 c2

)︂

holds 

with c∗
1 := (tc3)2c1 + (sc1)2c3. Thus f1 := tc3e1 + sc1e3, f2 := e2, f3 := se1 + te3, 

f4 := e4 is an orthogonal basis, and the Gram matrix for h with respect to that basis 

has diagonal entries c∗
1, c2, c2, c4. Repeating the argument, we obtain that either there 

exists a diagonal Gram matrix with three identical diagonal entries (if c4 / ∈ 𝑭 □c∗
1), or 

there exists a diagonal Gram matrix with two pairs of identical diagonal entries.

Up to similitude, we may thus assume that the Gram matrix (with respect to the 

standard basis) is one of



224 L. Kramer, M.J. Stroppel / Linear Algebra and its Applications 728 (2026) 211–231 

H1 :=

⎛

⎜

⎝

m 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟

⎠
, H2 :=

⎛

⎜

⎝

m 0 0 0
0 m 0 0
0 0 1 0
0 0 0 1

⎞

⎟

⎠
,

respectively, with m ∈ 𝑭 ∖ 𝑭 □.

a. If the form h is described by H1 then its discriminant m is not a square, and 𝑲

is not split; in fact, we have 𝑲 = 𝑭 (𝒋) ∼ = 𝑭 [X]/(X2 − m), with 𝒋2 = m / ∈ 𝑭 □. With 

respect to the 𝑲-basis e1 ∧ e2, e1 ∧ e3, e1 ∧ e4, the Gram matrix for g is 

(︃

m 0 0
0 m 0
0 0 m

)︃

. 

From 1.5c (applied with M = {0}) we know that O(W, g) ∼ = SL2(𝑲). As m is a square 

in 𝑲, the set qg(W ) coincides with 𝑲□, and every multiplier of qg is a square. So 

GO(W, qg) = 𝑲×O(W, qg), and GO(W, g) = 𝑲×O(W, g).

In order to understand the group O(V, h), we first study the quadratic form given by 

q(x) = h(x, x) = mx2
1 +x2

2 +x2
3 +x2

4 = mx2
1 +(x2 +x3 +x4)2. As m is not a square in 𝑭 , 

the kernel of q is the hyperplane 
{︂

(0, x2, x3, x4)
⊺

⃓

⃓

⃓
x2 + x3 + x4 = 0

}︂

. This hyperplane is 

invariant under O(V, h); it will be convenient to use the basis b1 := e1, b2 := e2 + e3 + e4, 

b3 := e2 + e3, b4 := e2 + e4. With respect to that basis, the Gram matrix of h is the 

block matrix 
(︁

N 0
0 𝒊

)︁

, where N :=
(︁

m 0
0 1

)︁

is a Gram matrix for the norm form of 𝑲|𝑭 , and 

𝒊 :=
(︁

0 1
1 0

)︁

. In coordinates with respect to that basis, the isometry group of h consists of 

the block matrices of the form 
(︁

E 0
0 A

)︁

with the 2×2 identity matrix E, and A ∈ SL2(𝑭 ). 

In particular, we find O(V, h) ∼ = SL2(𝑭 ).

As in 1.5a, we generate the group SL2(𝑭 ) by the matrices Lx and Ux, with x ∈ 𝑭 . 

Transforming 
(︂

E 0
0 Lx

)︂

and 
(︂

E 0
0 Ux

)︂

back into the description with respect to standard 

coordinates, we obtain that O(V, h) is generated by the matrices Ãx := T̃ −1
(︂

E 0
0 Ax

)︂

T̃

and B̃x := T̃ −1
(︂

E 0
0 Bx

)︂

T̃ , where T̃ =
(︁

1 0
0 T

)︁

, Ãx =
(︂

1 0
0 L̂x

)︂

, and B̃x =
(︂

1 0
0 Ûx

)︂

, with 

x ∈ 𝑭 .

With respect to the 𝑲-basis e1∧e2, e1∧e3, e1∧e4 for W , we then find that the action of 

these elements on W is described by the matrices L̂x and Ûx, respectively, with x ∈ 𝑭 . 

The same matrices, but with x ∈ 𝑲 instead of x ∈ 𝑭 , generate O(W, g) ∼ = SL2(𝑲); 

see 1.5c. Therefore, the image of O(V, h) under η equals O(W, g) ∩ GL3(𝑭 ).

For each similitude φ ∈ GO(V, h), the multiplier rφ lies in the range q(V ) =

𝑭 □ + 𝑭 □m because that range contains 1. We note that q(V ) forms the quadratic ex-

tension field 𝑭 □(m) ∼ = 𝑭 (
√

m) ∼ = 𝑲 of 𝑭 □. Every element a2 + b2m ∈ 𝑭 □(m) ∖ {0} is 

the multiplier of some similitude of the form h; in coordinates with respect to the basis 

b1, b2, b3, b4, the block matrix 
(︁

A 0
0 A

)︁

with A :=
(︁

a b

bm a

)︁

∈ GL2(𝑭 ) describes a similitude

with multiplier a2 + b2m. So 𝑳 = 𝑳h = 𝑭 1 + 𝑭
(︁

0 1
m 0

)︁

.

b. Now consider the case where h is described by H2. Then the discriminant is a 

square, and 𝑲 is split. We normalize such that 𝒋2 = 1, and 𝑲 = 𝑭 + 𝑭 z ∼ = 𝑭 [X]/(X2)

holds for z := 1 + 𝒋. The kernel of the quadratic form given by q(x) = h(x, x) is spanned 

by d1 := e1 + e2 and d2 := e3 + e4. We use d3 := e1 and d4 := e4 to extend this to a basis 
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for V . With respect to that basis, the Gram matrix for h is the block matrix 
(︁

0 N

N N

)︁

. 

Again, N =
(︁

m 0
0 1

)︁

but this is no longer a Gram matrix for the norm of 𝑲|𝑭 . However, 

from 2 = dim𝑭 □ q(V ) = dim(𝑭 □ + 𝑭 □m) we infer that 1, m are linearly independent 

over 𝑭 □, and N is the Gram matrix of an anisotropic quadratic form on 𝑭 2. Thus the 

isometry group of that form is trivial.

In the chosen coordinates, a block matrix 
(︁

A B

C D

)︁

describing an isometry of h will 

leave the kernel of q invariant, so C = 0. Invariance of q then gives 
(︁

0 0
0 N

)︁

=
(︂

A
⊺

0

B
⊺

D
⊺

)︂

(︁

0 0
0 N

)︁ (︁

A B

0 D

)︁

=
(︂

0 0

0 D
⊺

ND

)︂

, and D is an element of the trivial isometry

group of the quadratic form described by N . So D = 1. Now invariance of h implies
(︁

0 N

N N

)︁

=
(︂

A
⊺

0

B
⊺

1

)︂

(︁

0 N

N N

)︁ (︁

A B

0 1

)︁

=
(︂

0 A
⊺

N

NA NB+B
⊺

N+N

)︂

, and A = 1 follows.

In the chosen coordinates, the isometry group of h therefore consists of the block 

matrices of the form 
(︁

1 B

0 1

)︁

with B ∈ 𝑭 2×2 such that NB is a symmetric matrix. Trans-

forming this description into coordinates with respect to the standard basis e1, e2, e3, e4,

we obtain O(V, h) =
{︂(︂

1+aJ bJ

mbJ 1+cJ

)︂ ⃓

⃓

⃓
a, b, c ∈ F

}︂

, where J =
(︁

1 1
1 1

)︁

. This shows that 

O(V, h) ∼ = 𝑭 3 is an elementary abelian 2-group.

Now w1 := e1 ∧ e4, w2 := e1 ∧ e3, w3 := e1 ∧ e2 is a 𝑲-basis for W , with 𝒋w1 =

e2 ∧ e3, 𝒋w2 = e2 ∧ e4, 𝒋w3 = me3 ∧ e4. With respect to the K-basis w1, w2, w3, the 

action of 
(︂

1+aJ bJ

mbJ 1+cJ

)︂

∈ O(V, h) is described by the matrix

⎛

⎝

1 + a + c + z(ac + mb2) a + c + z(a + ac + mb2) zmb
a + c + z(a + ac + mb2) 1 + a + c + z(ac + mb2) zmb

zb zb 1

⎞

⎠ ,

and the action on Wz, with respect to the 𝑭 -basis

w1z := (e1 ∧ e4)z = e1 ∧ e4 + e2 ∧ e3,

w2z := (e1 ∧ e3)z = e1 ∧ e3 + e2 ∧ e4,

w3z := (e1 ∧ e2)z = e1 ∧ e2 + e3 ∧ e4,

is described by the matrix

(︄

1 + a + c a + c 0
a + c 1 + a + c 0

0 0 1

)︄

.

This shows that the action of O(V, h) on Wz is not faithful, the kernel of the restriction ηo

is

ker ηo =

{︃(︃

1 + aJ bJ
bJ 1 + aJ

)︃ ⃓

⃓

⃓

⃓

a ∈ 𝑭

}︃

.

In coordinates with respect to the basis w1, w3, w1 + w3, the form g is described by the 

matrix 

(︃

m 0 m

0 1 0
m 0 0

)︃

. The matrix describing an isometry λ of g with respect to that basis 
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has all entries from F if, and only if, that matrix is in 

{︃(︃

1 0 0
0 1 0
a 0 1

)︃ ⃓

⃓

⃓

⃓

a ∈ 𝑭

}︃

. With respect

to the basis w1, w2, w3, such an isometry λ is thus described by a matrix of the form 
(︁

1+aJ 0
0 1

)︁

. Using 1.4 we now infer that the elements of O(W, g) are exactly those K-linear 

maps that are described (with respect to w1, w2, w3) by matrices of the form

ψ(a, u, S, t) :=

(︃

(1 + aJ)(1 + zS) zm(1 + aJ)u
zu

⊺
1 + zt

)︃

,

where a, t ∈ 𝑭 , u ∈ 𝑭 2, and S is a symmetric matrix with entries from 𝑭 . So

O(W, g) =
{︂

ψ(a, u, S, t)
⃓

⃓

⃓
a, t ∈ F, u ∈ F 2, S = S

⊺ ∈ F 2×2
}︂

;

the multiplication is given by

ψ(a, u, S, s) ψ(b, v, T, t) = ψ (a + b, u + v + bJu, S + T + tr(S)b𝒊, s + t) .

The subgroups Θ := {ψ(a, 0, 0, 0) | a ∈ 𝑭 } and Z := {ψ(0, 0, 0, s) | s ∈ 𝑭 } are both in 

a natural way isomorphic to the additive group of 𝑭 . Note that Z is contained in the 

center

{︂

ψ(0, u, S, s)
⃓

⃓

⃓
s ∈ 𝑭 , u ∈ JF 2, S = S

⊺ ∈ 𝑭 3×3, tr(S) = 0
}︂

of O(W, g). The subgroups

Ξ2 := {ψ(0, u, 0, 0) | u ∈ F 2} ∼ = 𝑭 2 and Ξ3 := {ψ(0, 0, S, 0) | S = S
⊺ ∈ 𝑭 2×2} ∼ = 𝑭 3

are both normal in O(W, g), and O(W, g) is the direct product of Z with the semidirect 

product of Ξ2 ×Ξ3 with the subgroup Θ; conjugation by ψ(a, 0, 0, 0) maps ψ (0, u, S, 0) ∈
Ξ2 Ξ3 to ψ

(︁

0, u + aJu, S + tr(S)(a𝒊 + a2J), 0
)︁

.

Note that η maps 
(︂

1+aJ bJ

mbJ 1+cJ

)︂

to ψ
(︂

a + c,
(︁

b
b

)︁

,
(︂

a2+b2m a+a2+b2m

a+a2+b2m a2+b2m

)︂

, 0
)︂

.

As in case a, the set q(V ) coincides with the subfield 𝑭 □(m) of 𝑭 , and 𝑭 □(m) ∖ {0}
is the set of all multipliers of similitudes of h; in coordinates with respect to the basis 

d1, d2, d3, d4, the block matrix 
(︁

A 0
0 A

)︁

with A :=
(︁

a b

bm a

)︁

∈ GL2(𝑭 ) describes a similitude 

with multiplier a2 + b2m. So 𝑳h = 𝑳 = 𝑭 1 + 𝑭
(︁

0 1
m 0

)︁

is an extension of degree 2

over 𝑭 1. □

3.3  Proposition. If q has defect 1, then O(V, h) ∼ = 𝑭 is abelian, and 𝑲 is not split. We 

have O(V, h) ∼ = (𝑭 , +), and η(O(V, h)) < O(W, g) ∼ = (𝑲, +). There is a basis v1, v2, v3, v4

for V such that h has the Gram matrix

H :=

⎛

⎜

⎝

0 1 0 0
1 1 0 0
0 0 c3 0
0 0 0 c4

⎞

⎟

⎠
.
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With respect to the basis v1 ∧ v3, v2 ∧ v3, v1 ∧ v2 for W , the elements of η(O(V, h)) are 

those elements of O(W, g) that are described by matrices with entries from 𝑭 .

For each one of the forms h, qh, and g, every multiplier is a square, the respec-

tive groups of similitudes are GO(V, h) = 𝑭 × O(V, h) and GO(W, g) = 𝑲× O(W, g). 

However, the multipliers of the form qg are the non-zero elements of the quadratic ex-

tension 𝑲□(c3) over 𝑲□.

Proof. If dim𝑭 □ q(V ) = 3 then there is u1 ∈ V ∖ {0} with h(u1, u1) = 0. As h is not 

degenerate, there exists u2 ∈ V with h(u1, u2) = 1. We write s := h(u2, u2). If s = 0

then dim ker q > 1, contradicting our assumption that the range of q has dimension 3. 

We multiply the form by s−1 and then replace u1 by su1; we may thus assume s = 1.

The restriction of h to 𝑭 u1 + 𝑭 u2 is not degenerate, so {u1, u2}⊥ forms a vector 

space complement for that subspace in V . If the restriction of h to that complement 

were isotropic then dim ker q would be greater than 1.

So the restriction of h to {u1, u2}⊥ is anisotropic, and diagonalizable by 1.2. Choosing 

an orthonormal basis u3, u4 for {u1, u2}⊥, we obtain that the Gram matrix for h with 

respect to the basis u1, u2, u3, u4 is H; the discriminant of h is represented by δ := c3c4. 

Now δ / ∈ 𝑭 □; otherwise, the vector u3c4 + u4
√

c3c4 would be isotropic, and dim ker q

would be greater than 1. So 𝑲 ∼ = 𝑭 (
√

δ) is not split. We note that c3 / ∈ 𝑲□; in fact 

c3 =
(︁

r + t
√

δ
)︁2

with r, t ∈ 𝑭 would imply 0 = 1 + c3(r/c3)2 + c4t2, contradicting the 

fact that dim ker q = 1.

The group O(V, h) leaves invariant the quadratic form q. Therefore the subspace ker q

is invariant under O(V, h), and so is the orthogonal space ker q⊥, which is spanned by 

{u1, u3, u4}. Using these facts facilitates to see that the elements of O(V, h) are described 

(with respect to the basis u1, u2, u3, u4) by matrices of the form 
(︁

Ux 0
0 1

)︁

with x ∈ 𝑭 , 

E =
(︁

1 0
0 1

)︁

, and Ux as in 1.5a. So O(V, h) ∼ = (𝑭 , +).

The vectors v1 := u1 + u2, v2 := u2, v3 := u3, v4 := u4 form an orthogonal basis. In 

coordinates with respect to that basis, the group O(V, h) consists of the block matrices 

Ũx :=
(︂

Ûx 0
0 1

)︂

, with x ∈ 𝑭 . With respect to the 𝑲-basis w1 := v1 ∧ v3, w2 := v2 ∧ v3, 

w3 := v1 ∧ v2, the Gram matrix for the bilinear form g is 

(︃

c3 0 0
0 c3 0
0 0 1

)︃

. The form g is 

isotropic (as prophesied by [10, 2.9]); in fact, the vector w1 + w2 is isotropic with respect 

to g.

In order to determine GO(W, g), we consider the quadratic form qg obtained by 

evaluating g on the diagonal. That quadratic form has one-dimensional kernel because 

c3 / ∈ 𝑲□. So 𝑲(w1 + w2) is that kernel, and both 𝑲(w1 + w2) and (w1 + w2)⊥ =

𝑲(w1 + w2) + 𝑲w3 are invariant under the group GO(W, g). It turns out that the ele-

ments of GO(W, g) are described (with respect to the basis w1, w2, w3) by matrices of the 

form aÛx, with a ∈ 𝑲× and Ûx as in 1.5, with x ∈ 𝑲. This yields O(W, g) ∼ = (𝑲, +), and 

the group GO(W, g) is the direct product of that group by the multiplicative group 𝑲×. 

In coordinates with respect to the basis w1 + w2, w2, w3, the members of O(W, qg) are 
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described by matrices of the form 
(︁

1 b

0 1

)︁

with b ∈ K2, and 

(︃

1 0 0
0 0 c3

0 1 0

)︃

describes a similitude 

of qg with multiplier c3, so 𝑲□(c3) is the field of multipliers for qg.

For each similitude of h, the multiplier lies in q(V ) = 𝑭 □ + 𝑭 □c3 + 𝑭 □c4. If m ∈
q(V ) ∖ 𝑭 □ were a multiplier of some similitude then q(V ) would be a vector space 

over the field 𝑭 □(m). Since this is impossible, we obtain GO(V, h) = 𝑭 ×O(V, h), and 

GO(V, q) = 𝑭 ×O(V, q). □

3.4  Proposition. If q has defect 0 then both O(V, q) and O(V, h) are trivial, and the 

following assertions hold.

a. If q(V ) is a subfield of 𝑭 then the subfield 𝑳 := GO(V, q) ∪ {0} of End𝑭 (V ) is a 

totally inseparable extension of degree 4 and exponent 1 over 𝑭 1, and r(𝑳) = q(V ).

In all other cases, we have 𝑳 = 𝑭 1.

b. If there exists δ ∈ GO(V, h) ∖ 𝑭 1 then the discriminant of h is represented by an 

element of the field 𝑭 □(rδ).

c. If the discriminant of h is trivial then the field 𝑳h := GO(V, h) ∪ {0} coincides 

with 𝑳, and r(𝑳h) = r(𝑳) = q(V ).

d. If the discriminant of h is not trivial but q(V ) is a subfield of 𝑭 then the field 𝑳h

is an inseparable extension of degree 2 over 𝑭 1, and 𝑭 □ < r(𝑳h) < r(𝑳) = q(V ).

e. If 1 ∈ q(V ) but q(V ) is not a subfield of 𝑭 then 𝑳h = 𝑳 = 𝑭 1, and the discriminant 

of h is not trivial.

Proof. Let v1, v2, v3, v4 be an orthogonal basis for V with respect to h. Passing to a 

scalar multiple of the form, we may assume q(v1) = 1, then both h and q are described 

by the diagonal matrix with diagonal entries 1, a := q(v2), b := q(v3), and c := q(v4). 

The discriminant of h is the coset in 𝑭 ×/𝑭 ⊠ that is represented by det H = abc, and 

1, a, b, c are linearly independent over 𝑭 □ because q is anisotropic.

Recall from 1.3 that 𝑳 and 𝑳h are subfields of the endomorphism algebra End𝑭 (V ), 

and that the multiplier map r : 𝑳 → 𝑭 is a field homomorphism. For λ ∈ GO(V, q), 

the set 𝑬λ := 𝑭 1 + 𝑭 λ is a subfield of 𝑳, and q(V ) is a vector space over the field 

r(𝑬λ) = {rγ | γ ∈ 𝑭 1 + 𝑭 λ} = 𝑭 □(rλ).

If 𝑳 ̸= 𝑭 1, we choose λ ∈ GO(V, q) such that the multiplier rλ is not a square. 

Then q(V ) has dimension 2 over r(𝑬λ). The restriction of h to 𝑬λv1 = 𝑭 v1 + 𝑭 λ(v1) is 

not degenerate because (the restriction of) q is anisotropic.

Pick any w ∈ (𝑬λv1)⊥∖{0}. Then d := q(w) is not in r(𝑬λ) = q(𝑬λ(v1)) because q is 

injective. Now q(V ) = q(𝑬λ) + q(𝑬λ)d = 𝑭 □ + 𝑭 □rλ + 𝑭 □d + 𝑭 □rλd coincides with the 

field 𝑭 □(rλ, d) generated by rλ and d over 𝑭 □. This is a totally inseparable extension of 

degree 4 and exponent 1.

Conversely, assume that q(V ) is a subfield of 𝑭 . Then there are s1, sa, sb, sc ∈ 𝑭 with 

ab = s2
1 +s2

aa+s2
bb+s2

cc, and sc ̸= 0 because 1, a, b, ab are linearly independent over 𝑭 □. 

Replacing the fourth basis vector v4 by s1v1 + sav2 + sbv3 + scv4 now yields a basis 
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for V , and with respect to that basis, the form q is described by the diagonal matrix 

with diagonal entries 1, a, b, ab. In those coordinates, the matrices

A :=

⎛

⎜

⎝

0 a 0 0
1 0 0 0
0 0 0 a
0 0 1 0

⎞

⎟

⎠
and B :=

⎛

⎜

⎝

0 0 b 0
0 0 0 b
1 0 0 0
0 1 0 0

⎞

⎟

⎠

represent similitudes of q, and taking multipliers maps 𝑳 = 𝑭 1+𝑭 A+𝑭 B +𝑭 AB onto 

𝑭 □(a, b) = q(V ). This completes the proof of assertion a.

Now assume λ ∈ GO(V, h), and that λ is not a scalar multiple of the identity. Then 

q(V ) is a subfield of 𝑭 , and rλ ∈ q(V ) ∖ 𝑭 □. We put w1 := v1, w2 := λ(v1), and pick 

w3 ∈ {w1, w2}⊥ ∖ {0}. We observe that the restriction of the form h to 𝑭 w1 + 𝑭 w2 is 

not degenerate. As λ is a similitude of h, the subspace 𝑭 w3 + 𝑭 λ(w3) is the orthogonal 

complement for 𝑭 w1 + 𝑭 w2.

With respect to the basis w1, w2, w3, w4 := λ(v3), the form h is described by the Gram 

matrix

H ′ :=

⎛

⎜

⎝

1 s 0 0
s rλ 0 0
0 0 q(w3) t
0 0 t rλq(w3)

⎞

⎟

⎠
,

where s := h(w1, w2), and t = h(w3, w4). The discriminant of h is represented by det H ′ =

(rλ +s2)(q(w)2rλ +t2) = q(w)2r2
λ +(st)2 +(s+t)2rλ ∈ 𝑭 □(rλ), as claimed in assertion b.

We now use the orthogonal basis v1, v2, v3, v4, again. If the discriminant of h is trivial 

then abc is a square in 𝑭 , and with respect to the basis v1, v2, v3,
√

abc c−1v4, the form h

has the diagonal Gram matrix with diagonal entries 1, a, b, ab. The endomorphisms A

and B from above then give similitudes of h, with multipliers a and b, respectively. This 

yields 𝑳h = 𝑳 and r(𝑳h) = r(𝑳) = q(V ), so assertion c is proved.

Now assume that q(V ) is a subfield of 𝑭 , so c ∈ 𝑭 □(a, b). The discriminant of h

is represented by abc, and by assertion b that element lies in each subfield 𝑭 □(rδ), 

where δ ∈ GO(h) ∖ 𝑭 1. If the discriminant is not trivial then abc is not a square, 

and we have {rδ | δ ∈ GO(h)} ⊆ 𝑭 □(abc). Again, there exist s1, sa, sb, u ∈ 𝑭 with c =

s2
1 + s2

aa + s2
bb + u2ab, and u ̸= 0 because 1, a, b, c are linearly independent over 𝑭 □. 

Replacing the last basis vector v4 by u−1v4, we achieve u = 1, and

(∗) ab = s2
1 + s2

aa + s2
bb + c .

We claim that there exists γ ∈ GO(V, h) with multiplier rγ = abc. In order to find the 

images of the basis vectors v1, v2, v3, v4 under γ, we use the relation (∗) to compute

q(γ(v1)) = abc = (ab + s2
1)2 + (sbb + s1sa)2a + (saa + s1sb)2b + s2

1c ,

q(γ(v2)) = a2bc = a2
(︁

(sbb + s1sa)2 + (b + s2
a)2a + (s1 + sasb)2b + s2

ac
)︁

,

q(γ(v3)) = ab2c = b2
(︁

(saa + s1sb)2 + (s1 + sasb)2a + (a + s2
b)2b + s2

bc
)︁

,

q(γ(v4)) = abc2 = c2
(︁

s2
1 + s2

aa + s2
bb + c) .
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As q is injective, this yields

γ(v1) = (ab + s2
1)v1 + (sbb + s1sa)v2 + (saa + s1sb)v3 + s1v4 ,

γ(v2) = a
(︁

(sbb + s1sa)v1 + (b + s2
a)v2 + (s1 + sasb)v3 + sav4

)︁

,

γ(v3) = b
(︁

(saa + s1sb)v1 + (s1 + sasb)v2 + (a + s2
b)v3 + sbv4

)︁

,

γ(v4) = c
(︁

s1v1 + sav2 + sbv3 + v4) .

Straightforward computations (using the relation (∗), again) yield that γ(v1), γ(v2), 

γ(v3), γ(v4) is an orthogonal basis with respect to h, and thus γ is indeed a similitude 

with multiplier abc. We obtain 𝑳h = 𝑭 1 + 𝑭 γ and the proof of assertion d is complete.

If q(V ) is not a subfield of 𝑭 then assertion a yields 𝑳 = 𝑭 1, and 𝑳h = 𝑳 follows from 

𝑭 1 ≤ 𝑳h ≤ 𝑳. The discriminant is non-trivial by assertion c, and the last assertion e is 

established. □

We collect the results obtained for the different cases:

3.5  Theorem. Assume char 𝑭 = 2 and ℓ = 2. Then one of the following holds.

a. If q has defect 3, then 𝑲 splits and O(V, h) ∼ = 
(︁

SL2(𝑭 ) ⋉ 𝑭 2
)︁

× 𝑭 . The normal 

subgroup Ξ ∼ = 𝑭 2 × 𝑭 is the kernel of the action on Wz. See 3.1. 

We obtain SL2(𝑭 ) ∼ = ηo(O(V, h)) < O(W, g) ∼ = SL2(𝑲) ∼ = SL2(𝑭 ) × SL2(𝑭 ). 

Every multiplier is a square, so 𝑳h = 𝑳 = 𝑭 1, and GO(V, h) = 𝑭 × O(V, h).

b. If q has defect 2 and 𝑲 is not split, then O(V, h) ∼ = SL2(𝑭 ). See 3.2.a. 

We have SL2(𝑭 ) ∼ = η(O(V, h)) < O(W, g) ∼ = SL2(𝑲). 

The field 𝑳h = 𝑳 is an inseparable quadratic extension field of 𝑭 1.

c. If q has defect 2 and 𝑲 is split, then O(V, h) ∼ = 𝑭 3 is abelian, and its action on Wz

is neither trivial nor faithful. See 3.2.b. 

We have O(W, g) ∼ = 𝑭 ×
(︁

(𝑭 3 × 𝑭 2) ⋊ 𝑭
)︁

. 

Again, the field 𝑳h = 𝑳 is an inseparable quadratic extension field of 𝑭 1.

d. If q has defect 1, then O(V, h) ∼ = 𝑭 is abelian, and 𝑲 is not split. See 3.3. 

We have O(V, h) ∼ = (𝑭 , +), and η(O(V, h)) < O(W, g) ∼ = (𝑲, +). 

The field 𝑳h equals 𝑭 1, and the group of similitudes is GO(V, h) = 𝑭 × O(V, h).

e. If q has defect 0, then q is anisotropic and both O(V, q) and O(V, h) are trivial. 

See 3.4.

• If q(V ) is a subfield of 𝑭 then 𝑳 is a totally inseparable extension of degree 4

and exponent 1 over 𝑭 1, and r(𝑳) = q(V ).

• If q(V ) is not a subfield then the discriminant is not trivial, and 𝑳h = 𝑳 =

𝑭 1.

• If the discriminant is trivial then q(V ) = r(𝑳), and 𝑳h = 𝑳 has degree 4 over 

𝑭 1.

• If the discriminant is not trivial but q(V ) is a field then 𝑳h is an inseparable 

extension of degree 2 over 𝑭 1, and 𝑭 1 ≨ 𝑳h ≨ 𝑳. □
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