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Transformation Groups

A topological transformation group consists of a Hausdorff topological group G and a
nonempty Hausdorff space X on which G acts (usually from the left) in such a way that
the map

G×X −→ X, (g, x) 7−→ gx

is continuous. The orbit of x ∈ X is denoted by

G(x) = {gx | g ∈ G} ⊆ X

and the stabilizer of x is the subgroup

Gx = {g ∈ G | gx = x} ⊆ G.

The orbit space of the action is the set of orbits

G\X = {G(x) | x ∈ X}.

The orbit space is endowed with the quotient topology with respect to the map

q : x 7−→ G(x), x 7−→ G(x).

If U ⊆ G is open, then q−1(q(U)) =
⋃{g(U) | g ∈ G} is open, hence q is an open map.

In this chapter we study basic properties of topological transformation groups. We
first consider the compact-open topology on sets of mappings. The universal properties of
this topology are then applied to transformation groups acting on locally compact spaces.
Then we study proper actions and in particular actions of compact groups and their orbit
spaces.
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The Compact-Open Topology

We recall that a basis for a topology T on a set X is a subset B ⊆ T , such that for every
U ∈ T and every x ∈ U there exists V ∈ B with x ∈ V ⊆ U . In other words, every
open set is a union of elements of B. For example, T itself is a basis for T . In a metric
space, the collection of all open balls is a basis. A subset S ⊆ T is called a subbasis for
the topology T if for every open set U ⊆ X and every x ∈ X there exist V1, . . . , Vm ∈ S,
for m ≥ 1, with x ∈ V1 ∩ · · · ∩ Vm ⊆ U . Then the collection of all finite intersections of
members of S is a basis for T . If Y ⊆ X , then B|Y is a basis for the subspace topology
on Y , and S|Y is a subbasis for the subspace topology.

Suppose that S is any collection of subsets of a set X , with
⋃S = X . The latter

condition can always be met by enlarging S to S ∪{X}. If we let B denote the collection
of all finite intersections of members of S,

B = {
⋂
F | ∅ 6= F ⊆ S is finite },

then the set
T = {

⋃
C | C is any subset of B}

is a topology on X with basis B, and S is a subbasis for this topology. One calls T the
topology generated by the subbasis S. If S is a subbasis of a topology T , then this process
recovers the topology T from its subbasis S. The following observation is elementary.

Lemma 2.1. Let T be a topology on a set Y , with a subbasis S ⊆ T . Let X be a
topological space and let f : X −→ Y be a map. Then f is continuous at x ∈ X if and
only if for every V ∈ S with f(x) ∈ V there exists a neighborhood U of x with f(U) ⊆ V .

Proof. If f is continuous at x, then this condition is satisfied because S ⊆ T . Conversely,
suppose that the condition is satisfied. If W is any neighborhood of f(x), then there exist
V1, . . . , Vm ∈ S with f(x) ∈ V1 ∩ · · · ∩ Vm ⊆ W . For each i = 1, . . . , m there exists a
neighborhood Ui of x with f(Ui) ⊆ Vi. Then U = U1 ∩ · · · ∩ Um is a neighborhood of x
with f(U) ⊆W .

Now we get to the central definition of this chapter.

Definition 2.2. Suppose thatX and Y are Hausdorff spaces. The compact-open topology
on the set C(X, Y ) of continuous maps from X to Y is defined as follows. For A ⊆ X
and B ⊆ Y we put

〈A;B〉 = {f ∈ C(X, Y ) | f(A) ⊆ B}.
The compact-open topology is the topology generated by the subbasis

S = {〈K;V 〉 | K ⊆ X is compact and V ⊆ Y is open}.

[Linus Kramer, Locally Compact Groups and Lie groups]
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Example 2.3. If X is a discrete space, then the compact subsets of X are the finite
subsets. Therefore the compact-open topology on C(X, Y ) = Y X is the product topology.
This topology is also called the topology of pointwise convergence. If X consists of a single
point, X = {x}, then in particular the map C({x}, Y ) = Y {x} −→ Y that maps f to f(x)
is a homeomorphism.

Suppose that h : Z −→ X is a continuous map between Hausdorff spaces Z,X . Then
h induces a map h∗ : C(X, Y ) −→ C(Z, Y ) via h∗(g) = g ◦ h.

Lemma 2.4. Let X, Y, Z be Hausdorff spaces, and let h : Z −→ X be continuous. Then
the map

h∗ : C(X, Y ) −→ C(Z, Y )

is continuous with respect to the compact-open topologies.

Proof. Suppose that K ⊆ Z is compact, that W ⊆ Y is open and that g ∈ C(X, Y ) with
h∗(g) = g ◦ h ∈ 〈K;W 〉. Then h(K) is compact and h∗(〈h(K);W 〉) ⊆ 〈K;W 〉. Hence h∗
is continuous at g by Lemma 2.1.

If we put Z = X , endowed with the discrete topology, and h = idX , we obtain in
particular that the injection

C(X ; Y ) −→ Y X

is continuous, where the right-hand side carries the topology of pointwise convergence.
Therefore C(X, Y ) is a Hausdorff space, and even regular if Y is regular. On the other
hand, if we put Z = {x} for some point x ∈ X and h(x) = x, we obtain from Example 2.3
and Lemma 2.4 the continuity of the evaluation map

evx : C(X, Y ) −→ Y, f 7−→ f(x).

The continuous maps from a space to itself make up a monoid, i.e. a semigroup with a
two-sided identity.

Definition 2.5. A topological monoid (M, ·, T ) is a monoid (M, ·) with a topology T on
M such that the monoid multiplication M ×M −→ M , (x, y) 7−→ x · y is continuous.

Proposition 2.6. Let X and Z be Hausdorff spaces and let Y be a locally compact space.
Then the composition map

c : C(X, Y )× C(Y, Z) 7−→ C(X,Z), (f, h) 7−→ h ◦ f

is continuous with respect to the compact-open topologies on C(X, Y ), C(Y, Z) and C(X,Z).
In particular, the monoid C(Y, Y ) is a Hausdorff topological monoid with respect to the
compact-open topology.

[Linus Kramer, Locally Compact Groups and Lie groups]

[Preliminary Version - May 19, 2020]
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Proof. Suppose that f ∈ C(X, Y ) and h ∈ C(Y, Z), and that 〈K;W 〉 ⊆ C(X,Z) contains
h ◦ f . We put U = h−1(W ). Since U is locally compact and contains f(K), there exists
by Corollary 1.23 an open neighborhood V of f(K) in U with compact closure V ⊆ U .
Thus f ∈ 〈K;V ) and h ∈ 〈V ;W 〉, and c(〈K;V ) × 〈V ;W 〉) ⊆ 〈K;W 〉. By Lemma 2.1,
the map c is continuous at (f, h).

Corollary 2.7. Suppose that Y is locally compact and that Z is a Hausdorff space. Then
the joint evaluation map

ev : Y × C(Y, Z) −→ Z, (y, h) 7−→ evy(h) = h(y)

is continuous with respect to the compact-open topology.

Proof. LetX = {0} denote the one-point topological space. We noted in Example 2.3 that
there is a homeomorphism Y −→ C(X, Y ) that maps y ∈ Y to the map y′ = [0 7−→ y].
Hence the map (y, f) 7−→ ev0(y

′ ◦ f) = f(y) is continuous by the remark following
Lemma 2.4 and by Proposition 2.6.

Before we prove the main theorem about the compact-open topology, we need two
results about subbases.

Lemma 2.8. Let X and Y be Hausdorff spaces and let S be a subbasis for the topology
on Y . Then the sets 〈K;V 〉, for K ⊆ X compact and V ∈ S, form a subbasis for the
compact-open topology on C(X, Y ).

Proof. Suppose that f ∈ 〈K;W 〉, for K ⊆ X compact and W ⊆ Y open. For each x ∈ K
there are sets Vx,1, . . . , Vx,nx

∈ S with f(x) ⊆ Vx,1 ∩ · · · ∩ Vx,nx
⊆ W . Since K is normal,

there exists a closed neighborhood Kx of x in K such that f(Kx) ⊆ Vx,1 ∩ · · · ∩ Vx,nx
.

Since K is compact, there is a finite set F ⊆ K with K ⊆ ⋃{Kx | x ∈ F}. Thus

f ∈
⋂

x∈F

nx⋂

j=1

〈Kx;Vx,j〉 ⊆ 〈K;W 〉.

Lemma 2.9. Let X, Y and Z be Hausdorff spaces. The the sets 〈K×L;W 〉, with K ⊆ X
and L ⊆ Y compact and W ⊆ Z open, form a subbasis for the compact-open topology on
C(X × Y, Z).

Proof. Let M ⊆ X × Y be compact and let W ⊆ Z be open. Suppose that f ∈ 〈M ;W 〉.
We put K = pr1(M) ⊆ X and L = pr2(M) ⊆ Y and we consider the restriction f |K×L :
K×L −→ Z. Since K×L is normal, every p ∈M has a neighborhood of the formKp×Lp
in K ×L, with Kp and Lp compact, with f(Kp×Lp) ⊆W . Since M is compact, there is
a finite set E ⊆M withM ⊆ ⋃

p∈EKp×Lp. Thus f ∈
⋂
p∈E〈Kp×Lp;W 〉 ⊆ 〈M ;W 〉.

[Linus Kramer, Locally Compact Groups and Lie groups]
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The following theorem captures the universal property of the compact-open topology.

Theorem 2.10. Let X, Y and Z be Hausdorff spaces. The map

C(X × Y, Z) −→ C(X,C(Y, Z)), f 7−→ f̂ = [x 7−→ f(x,−)]
is a topological embedding. If Y is locally compact, then this map is bijective.

Proof. We divide the proof into several steps.

Step 1. If f : X × Y −→ Z is continuous, then f̂ : X −→ C(Y, Z) is continuous.
If L ⊆ Y is compact and W ⊆ Z is open, with f̂(x) ∈ 〈L;W 〉, then f({x} × L) ⊆W .

There exists by Wallace’s Lemma 1.21 an open neighborhood of U of x with f(U×L) ⊆W ,
whence f̂(U) ∈ 〈L;W 〉. Thus f̂ is continuous at x by Lemma 2.1.

Step 2. If Y is locally compact and if h : X −→ C(Y, Z) is continuous, then the map
f : (x, y) 7−→ h(x)(y) is continuous.

This map is the composite X × Y −→ C(Y, Z) × Y −→ Z of the continuous map
(x, y) 7−→ (h(x), y) and the joint evaluation map, which is continuous by Corollary 2.7.

Step 3. The sets 〈K × L;W 〉, with K ⊆ X and L ⊆ Y compact and W ⊆ Z open, form
a subbasis for the compact-open topology on C(X × Y, Z).

This is the content of Lemma 2.9.

Step 4. The sets 〈K; 〈L;W 〉〉, with K ⊆ X and L ⊆ Y compact and W ⊆ Z open, form
a subbasis for the compact-open topology on C(X,C(Y, Z)).

This follows at once from Lemma 2.8.
Now we finish the proof. By Step 1, the map ϕ : f 7−→ f̂ takes its values in

C(X,C(Y, Z)). Since f̂(x)(y) = f(x, y), the map ϕ is injective. By Step 2 the map
ϕ is surjective if Y is locally compact. In any case, ϕ maps C(X × Y, Z) bijectively onto
the set

Q = {f̂ | f ∈ C(X × Y, Z)} ⊆ C(X,C(Y, Z)).

Let S1 denote the subbasis on C(X × Y, Z) provided by Step 3, and let S2 denote the
subbasis on C(X,C(Y, Z)) provided by Step 4. We note that ϕ maps 〈K × L;W 〉 ∈ S1
bijectively onto 〈K; 〈L;W 〉〉 ∩Q ∈ S2|Q. Therefore the corestriction C(X × Y, Z) −→ Q
of ϕ is a homeomorphism, that is, ϕ is an embedding.

Topological Transformation Groups

Now we turn to topological transformation groups. We first have to consider actions of
monoids.

Proposition 2.11. LetM be a Hausdorff topological monoid (e.g. a Hausdorff topological
group) and let X be a locally compact space. Let h : M −→ C(X,X) be an abstract
homomorphism of monoids. Then the following are equivalent.

[Linus Kramer, Locally Compact Groups and Lie groups]

[Preliminary Version - May 19, 2020]
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(i) The monoid homomorphism h is continuous with respect to the compact-open topol-
ogy.

(ii) The action M ×X −→ X that maps (m, x) to h(m)(x) is continuous.
In particular, the compact-open topology is the coarsest topology that turns C(X,X) into
a topological monoid in such a way that the action C(M,M)×M −→M is continuous.

Proof. This is a direct consequence of Theorem 2.10.

We are interested in actions of groups, rather than in actions of monoids. Given a
topological space X , we let

Homeo(X) ⊆ C(X,X)

denote the group of all homeomorphisms of X . If X is a locally compact space, then the
previous corollary tells us that the multiplication in Homeo(X) is continuous with respect
to the compact-open topology. It remains to inspect the inversion map g 7−→ g−1 more
closely. The following is a general construction that deals with this issue.

Lemma 2.12. Let G be a group and let T be a topology on G such that the multiplication

m : G×G −→ G, (x, y) 7−→ xy

is continuous with respect to T , i.e. G is a topological monoid with respect to T . If S is
a subbasis for T , then Si = S ∪ {V −1 | V ∈ S} is a subbasis for a group topology T i on
G that refines the topology T . This topology T i is the unique coarsest group topology on
G that contains T .
Proof. From the definition of Si, the inversion map g 7−→ g−1 is continuous with respect
to T i by Lemma 2.1. We have to check that the group multiplication m : G×G −→ G is
continuous with respect to T i. Let W ∈ Si and let a, b ∈ G with ab ∈ W . If W ∈ S, we
choose U1, . . . , Uk, V1, . . . , Vℓ ∈ S with a ∈ U1 ∩ · · · ∩ Uk and b ∈ V1 ∩ · · · ∩ Vℓ, such that

m((U1 ∩ · · · ∩ Uk)× (V1 ∩ · · · ∩ Vℓ)) ⊆W.

If W−1 ∈ S, we choose U1, . . . , Uk, V1, . . . , Vℓ ∈ S with a−1 ∈ U1 ∩ · · · ∩ Uk and b−1 ∈
V1 ∩ · · · ∩ Vℓ, such that

m((V1 ∩ · · · ∩ Vℓ)× (U1 ∩ · · · ∩ Uk)) ⊆W−1.

Then
m((U−1

1 ∩ · · · ∩ U−1
k )× (V −1

1 ∩ · · · ∩ U−1
ℓ )) ⊆W

This shows by Lemma 2.1 that the multiplication is continuous with respect to T i at (a, b).
If T ′ is any group topology on G containing T , then T ′ also contains Si and hence

T i ⊆ T ′.

[Linus Kramer, Locally Compact Groups and Lie groups]
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Suppose that X is a topological space, that K,W ⊆ X and that g ∈ Homeo(X). Then

g ∈ 〈K;W 〉 ⇐⇒ g(K) ⊆ W

⇐⇒ K ⊆ g−1(W )

⇐⇒ X −K ⊇ g−1(X −W )

⇐⇒ g−1 ∈ 〈X −W ;X −K〉.

The following is an immediate consequence of this observation and Lemma 2.12.

Proposition 2.13. Let X be a locally compact space. Then the topology on Homeo(X)
generated by the subbasis

S = {Homeo(X) ∩ 〈A;W 〉 | A ⊆ X is closed and W ⊆ X is open and

A is compact or X −W is compact}

is the unique coarsest group topology on Homeo(X) that contains the compact-open topol-
ogy.

We call this group topology on Homeo(X) the Arens topology. It has the following
universal property.

Proposition 2.14. Let G be a Hausdorff topological group, let X be a locally compact
space and let h : G −→ Homeo(X) be an abstract homeomorphism. Then the following
are equivalent.
(i) The homomorphism h is continuous with respect to the Arens topology.
(ii) The action G×X −→ X that maps (g, x) to h(g)(x) is continuous.

Proof. If h is continuous, then the composite G
h−−→ Homeo(X) −→ C(X,X) is also con-

tinuous, for the compact-open topology on C(X,X). Hence the action is continuous by
Proposition 2.11. Conversely, suppose that the action is continuous. Then the homomor-
phism h is, by Proposition 2.11, continuous with respect to the compact-open topology on
Homeo(X). If K ⊆ X is compact and W ⊆ X is open and if V = Homeo(X) ∩ 〈K;W 〉,
then h−1(V −1) = (h−1(V ))−1 is open in G and thus h is, by Lemma 2.1, continuous with
respect to the Arens topology.

The following is immediate from the definition of the Arens topology.

Proposition 2.15. If X is a compact space, then the Arens topology and the compact-
open topology on Homeo(X) coincide and hence Homeo(X) is a Hausdorff topological
group with respect to the compact-open topology.

The following is another useful criterion for this.

[Linus Kramer, Locally Compact Groups and Lie groups]

[Preliminary Version - May 19, 2020]
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Theorem 2.16 (Arens–Dijkstra). Let X be a locally compact space. If every point
x ∈ X has a compact connected neighborhood, then the Arens topology and the compact-
open topology on Homeo(X) coincide. In particular, Homeo(X) is a Hausdorff topological
group with respect to the compact-open topology.

Proof. In view of Proposition 2.13 it suffices to show the following.

Claim. If A ⊆ X is closed and if W ⊆ X has a compact complement K, then the set
Q = Homeo(X)∩〈A;W 〉 is open with respect to the compact-open topology on Homeo(X).

Let g ∈ Q. For each x ∈ X we choose a compact connected neighborhood Cx, with
interior Ux. There is a finite subset F ⊆ g−1(K) such that g−1(K) ⊆ ⋃

x∈F Ux. We put

L =
⋃

x∈F

Cx.

Thus L ⊇ g−1(K) is a finite union of compact connected sets. Now we choose a compact
set M ⊆ X that contains L in its interior, using either a similar construction as for L, or
Corollary 1.23. The topological boundary of M is the compact set ∂M = M ∩ X −M .
We note that ∂M ∩ L = ∅. The set

V = Homeo(X) ∩ 〈A ∩M ;W 〉 ∩ 〈∂M ; g(X − L)〉 ∩
⋂

x∈F

〈{x}; g(Ux)〉

is open in Homeo(X) and contains g. We claim that V is contained in Q. Let h ∈ V and
x ∈ F . Then h(∂M) is disjoint from g(L) ⊇ g(Cx). On the other hand, h(x) ∈ g(Cx).
The point h(x) is in the interior of h(M). Being connected, g(Cx) is thus contained in
the interior of h(M). Thus

K ⊆ g(L) ⊆ h(M)

and therefore h(X −M) ⊆ W . Since h(A ∩M) ⊆ W , we have h(A) ⊆ W . This proves
the claim.

We recall that a topological space is called locally connected if every point has arbi-
trarily small open connected neighborhoods. An example of a locally compact space that
is not locally connected, but where every point has a compact connected neighborhood,
is the set

X = {(x, sin(1/x)) | x > 0} ⊆ R2.

Corollary 2.17. Let X be a locally compact and locally connected space. Then Homeo(X),
endowed with the compact-open topology, is a topological group.

The following example shows that for the homeomorphism group of a locally compact
and totally disconnected space, the compact-open topology may differ from the Arens
topology

[Linus Kramer, Locally Compact Groups and Lie groups]
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Example 2.18. Let C = {0, 1}N1 denote the Cantor set consisting of of all {0, 1}-valued
sequences, endowed with the topology of pointwise convergence. We put 0 = (0, 0 . . .)
and 1 = (1, 1, . . .). Let

Un = {c ∈ C | c1 = · · · = cn = 0} and Vn = {c ∈ C | c1 = · · · = cn = 1}.

These sets are closed and open in C. The sets Un form an neighborhood basis of 0 and
the sets Vn form a neighborhood basis of 1.

We define a sequence of homeomorphisms hn of C, for n ≥ 1, as follows.

hn((0, . . . , 0
n

, 0, xn+2, . . .)) = (0, . . . , 0
n

, xn+2, . . .)

hn((0, . . . , 0
n

, 1, xn+2, . . .)) = (1, . . . , 1
n

, 1, xn+2, . . .)

hn((1, . . . , 1
n

, xn+1, . . .)) = (1, . . . , 1
n

, 0, xn+1, . . .)

hn(c) = c else.

Thus

hn(Un+1) = Un, hn(Un − Un+1) = Vn+1, hn(Vn) = Vn − Vn+1,

and hn|C−(Un∪Vn) = idC−(Un∪Vn).

We note that each hn fixes 0 and we put X = C − {0}. We claim that limn hn|X = idX ,
but that (hn|X)−1 does not converge to idX in the compact-open topology of X .

For the first claim, letK ⊆ X be compact and letW ⊆ X be open, with idX ∈ 〈K;W 〉.
Thus K ⊆W . Since K ⊆ C is compact and does not contain 0, there is m ≥ 1 such that
Um ∩K = ∅. Suppose that 1 ∈ X −K. Then there exists n ≥ 0 such that Vn ∩K = ∅.
For ℓ ≥ m,n we have thus hℓ|K = idK , and thus hℓ|X ∈ 〈K;W 〉. Suppose now that 1 ∈ K.
Then there exists n ≥ 1 such that Vn ⊆ W . For ℓ ≥ m,n we have thus hℓ|K−Vℓ = idK−Vℓ

and hℓ(Vℓ) ⊆ Vℓ ⊆W , whence hℓ|X ∈ 〈K;W 〉. This shows that limn hn|X = idX .
On the other hand, 1 ∈ hn(Un) and therefore the sequence (h−1

n (1))n∈N1
does not con-

verge to 1. Since evaluation at 1 is continuous, this shows that the sequence (h−1
n |X)n∈N1

does not converge to idX in the compact-open topology.

Proper Actions

Before we study proper actions, we recall a few facts about proper maps. Proper maps
are closely related to compactness by Kuratowski’s Theorem.

Theorem 2.19 (Kuratowski). Let X be a Hausdorff space. The following are equiva-
lent.

[Linus Kramer, Locally Compact Groups and Lie groups]
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(i) The space X is compact.
(ii) For every Hausdorff space Z, the map pr2 : X × Z −→ Z is closed.

Proof. Suppose that X is compact and that A ⊆ X × Z is closed. We claim that pr2(A)
is closed. Let z ∈ Z − pr2(A). Thus (X × {z}) ∩ A = ∅. By Wallace’s Lemma 1.21, z
has a neighborhood U ⊆ Z such that (X × U) ∩ A = ∅. Since U ∩ pr2(A) = ∅, the set
A is open.

Suppose that X is not compact. Then there exists a nonempty collection K of closed
subsets of X with the finite intersection property, with

⋂K = ∅. We put Z = X ∪ {∞},
where ∞ 6∈ X , and we define a topology on Z as follows. By definition, a subset U ⊆ Z
is open if either U ⊆ X , or if there is a nonempty finite subset F ⊆ K such that⋂F ⊆ U . It is readily verified that this is a topology. If x, y ∈ X are distinct points,
then {x} and {y} are disjoint neighborhoods of x and y, respectively. Also, there exists
K ∈ K with x 6∈ K, since

⋂K = ∅. Then {∞} ∪K and {x} are disjoint neighborhoods
of ∞ and x, respectively. Hence Z is a Hausdorff space. Every neighborhood of ∞
intersects X nontrivially, because

⋂F 6= ∅ for every nonempty finite subset F ⊆ K. Let
D = {(x, x) | x ∈ X} ⊆ X × Z. Then pr2(D) = X ⊆ Z. We claim that pr2(D) is not
closed. Otherwise we would have (x,∞) ∈ D, for some x ∈ X . But there is K ∈ K with
x 6∈ K, and thus (X−K)× ({∞}∪K) is a neighborhood of (x,∞) which is disjoint from
D. Hence pr2 : X × Z −→ Z is not a closed map.

Definition 2.20. Let

f : X −→ Y

be a continuous map between Hausdorff spaces. We call f proper if for every Hausdorff
space Z, the map

f × idZ : X × Z −→ Y × Z
is closed.

The following are immediate consequences of the definition and Kuratowski’s Theorem.

Lemma 2.21. Let f : X −→ Y be a proper map. Then the following hold.
(i) The map f is closed.
(ii) If f is injective, then f is a topological embedding.
(iii) For every subset B ⊆ Y and A = f−1(B), the restriction-corestriction f |BA : A −→ B

is proper.
(iv) For every closed set A ⊆ X the restriction-corestriction f |f(A)A : A −→ f(A) is

proper.
(v) If f is constant, then X is compact.
(vi) For every compact set B ⊆ Y , the preimage of B is compact.

[Linus Kramer, Locally Compact Groups and Lie groups]
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Proof. Claim (i) follows from the definition by putting Z = {0}. A closed injective
continuous map is a topological embedding, hence (ii) also follows. For (iii) we note that
A×Z = (f × idZ)(B×Z) and therefore the restriction-corestriction A×Z −→ B×Z is
a closed map, provided that f × idZ is a closed map. For (iv) we note that if E is closed
in A× Z, then (f × idZ)(E) is closed in Y × Z and hence closed in f(A)× Z. Claim (v)
follows from (iv) and Kuratowski’s Theorem 2.19. In the special case that B = {b} is a
singleton, (vi) follows from (iv) and (v). In general, let U be an open covering of f−1(B).
The preimage of every point b ∈ B is compact and hence there is a finite subset Ub ⊆ U
such that f−1(b) ⊆ ⋃Ub. The set Ab = f(X − ⋃Ub) is closed and does not contain b,
hence Vb = Y −Ab is an open neighborhood of b. Since B is compact, there exist finitely
many points b1, . . . , bm ∈ B such that B =

⋃m
j=1 Vbj . Let x ∈ X . If x 6∈ ⋃Ubj , then

f(x) ∈ f(X −⋃Ubj ) = Abj . This shows that f
−1(B) ⊆ ⋃m

j=1

⋃Ubj and therefore f−1(B)
is compact.

These properties characterize proper maps.

Proposition 2.22. Let f : X −→ Y be a continuous map between Hausdorff spaces X, Y .
Then the following are equivalent.

(i) The map f is proper.
(ii) The map f is closed and the preimage of every point y ∈ Y is compact.

If Y is locally compact and if every compact set B ⊆ Y has compact preimage, then f is
proper and X is locally compact.

Proof. By Lemma 2.21, (i) ⇒ (ii). Suppose that (ii) holds. Let Z be a Hausdorff space
and let E ⊆ X × Z be a closed set. We claim that F = (f × idZ)(E) is closed in Y × Z.
Let (y, z) ∈ (Y × Z)− F . The preimage of (y, z) is the compact set (f × idZ)

−1(y, z) =
f−1(y) × {z}, and this set is disjoint from E. By Wallace’s Lemma 1.21 there are open
sets U ⊆ X and V ⊆ Z with f−1(y)×{z} ⊆ U ×V ⊆ (X×Z)−E. Since f is closed, the
set A = f(X − U) is closed and hence W = Y − A is open. Also, y ∈ W because f−1(y)
is disjoint from X − U . Since f−1(W ) ⊆ U , the open set f−1(W )× V is disjoint from E
and hence W × V an open neighborhood of (y, z) which is disjoint from F .

Suppose that Y is locally compact and that every compact subset B ⊆ Y has compact
preimage. Let x ∈ X and let V ⊆ Y be an open neighborhood of f(x) with compact
closure. Then f−1(V ) is an compact neighborhood of x, hence X is locally compact. It
remains to show that f is closed. Let A ⊆ X be closed subset with y ∈ f(A). Let U be
a compact neighborhood of y. Then f(A) ∩ U = f(A ∩ f−1(U) is compact and therefore
closed. Hence y ∈ f(A) ∩ U = f(A) ∩ U and therefore f(A) is closed.

Now we consider proper actions.
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Definition 2.23. Let G be a Hausdorff topological group and let X be a Hausdorff space.
We call an action

α : G×X −→ X

a topological transformation group if the map α : (g, x) −→ gx is continuous. We endow
the orbit space G\X = {G(x) | x ∈ X} with the quotient topology with respect to the
map

q : X −→ G\X, g 7−→ G(x).

We note that q is always open, since g−1(q(U)) =
⋃{g(U) | g ∈ G}. If the map

α̃ : G×X −→ X ×X, (g, x) 7−→ (gx, x)

is proper, then the action α is called proper.

Lemma 2.24. Let α : G×X −→ X be a proper action. Then the following hold.
(i) For every x ∈ X the stabilizer Gx is compact.
(ii) For every x ∈ X the map evaluation map G −→ X, g 7−→ gx is proper and in

particular closed.
(iii) For every x ∈ X, the induced map G/Gx −→ G(x), gGx 7−→ gx is a homeomor-

phism.
(iv) Every G-orbit G(x) is closed.
(v) The orbit space G\X is a Hausdorff space with respect to the quotient topology.

Proof. The set Gx × {x} is the α̃-preimage of (x, x), hence (i) holds by Lemma 2.21(vi).
The α̃-preimage of X × {x} is G × {x}, hence (ii) holds by Lemma 2.21(iii). Since a
proper map is closed, (iv) follows from (ii). The map G −→ G(x) is proper by (ii)
and by Lemma 2.21(iii) and therefore in particular closed. On the other hand, the map
G −→ G/Gx is a quotient map,

G G(x)

G/Gx.

Hence the map G/Gx −→ G(x) is a homeomorphism. For (v) we note that the map
q × q : X ×X −→ G\X × G\X is open and hence a quotient map. The q × q-preimage
of the diagonal D in G\X × G\X is the closed set α̃(G ×X). Hence the diagonal D is
closed and therefore G\X is Hausdorff.

For locally compact transformation groups there is the following convenient charac-
terization of proper actions.
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Theorem 2.25. Let α : G × X −→ X be a topological transformation group. If G is
locally compact, then the following are equivalent.
(i) The action is proper.
(ii) For all x, y ∈ X there are neighborhoods U and V of x and y, respectively, such that
{g ∈ G | U ∩ g(V ) 6= ∅} has compact closure in G.

Proof. First of all we note the following. Let U, V ⊆ X be subsets. Then

(gz, z) ∈ U × V ⇐⇒ gz ∈ U ∩ g(V ).

We put
Q = {(gz, z) | g ∈ G and z ∈ X} = α̃(G×X).

Suppose that the action is proper. If x and y have different orbits, then (x, y) is not
contained in the closed set Q. Hence there are neighborhoods U of x and V of y such
that (U × V )∩Q = ∅ and thus {g ∈ G | U ∩ g(V ) 6= ∅} = ∅. If (x, y) ∈ Q, then x = hy
for some h ∈ G and the set

P = {(g, z) ∈ G×X | (gz, z) = (x, y)} = {(g, y) ∈ G×X | g ∈ hGy}

is compact. Let W ⊇ hGy be open with compact closure. Then W × X is an open
neighborhood of P . Since A = α̃((G −W ) × X) is closed and does not contain (x, y),
there are open neighborhoods U and V of x and y, respectively, with (U × V ) ∩ A = ∅.
Therefore {(g, z) ∈ G × X | (gz, z) ∈ U × V } ⊆ W × X and in particular {g ∈ G |
U ∩ g(V ) 6= ∅} ⊆W .

Suppose now that (ii) holds. The set {(g, y) ∈ G × X | gy = x} is compact for
every (x, y) ∈ X × X . By Proposition 2.22 it remains to show that α̃ is a closed map.
Let E ⊆ G × X be closed and put F = α̃(E). Suppose that (x, y) ∈ F . We choose
neighborhoods U of x and V of y such that {g ∈ G | U ∩ g(V ) 6= ∅} has compact closure
A ⊆ G. We claim that x = ay for (a, y) ∈ E ∩ (A×{y}). Otherwise we find, by Wallace’
Lemma 1.21, a neighborhood V ′ ⊆ V of y and a neighborhood U ′ ⊆ U of x such that
U ′ ∩ {av | (a, v) ∈ E ∩ (A × V ′)} = ∅. On the other hand, there is (g, z) ∈ E with
(gz, z) ∈ U ′ × V ′, and (g, z) ∈ A× V ′. This is a contradiction. Hence (x, y) ∈ F .
Definition 2.26. Let Γ be a group acting on a Hausdorff space X . If for every g ∈ Γ the
map x 7−→ gx is continuous, then

Γ×X −→ X

is a topological transformation group with respect to the discrete topology on Γ. By
Theorem 2.25 this action is proper if and only if for all x, y ∈ X there exist neighborhoods
U and V of x and y, respectively, such that the set {g ∈ Γ | U ∩g(V ) 6= ∅} is finite. Such
an action of a discrete group is called a properly discontinuous action.
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Elementary Properties of Compact Transformation Groups

Definition 2.27. A topological transformation group K ×X −→ X is called a compact
transformation group if the group K is compact.

Proposition 2.28. Let K × X −→ X be a compact transformation group. Then the
action is proper. The map q : X −→ K\X is also proper. In particular, q is open and
closed. Moreover, X is locally compact if and only if K\X is locally compact.

Proof. The action is proper by Theorem 2.25. We claim that q is closed. Let A ⊆ X
be a closed subset. We have to show that q−1(q(A)) = K(A) is closed. Suppose that
x ∈ X −K(A). Then K(x) is disjoint from A and by Wallace’ Lemma 1.21 there is an
open neighborhood U of x such that K(U) ∩ A = ∅. whence U ∩ K(A) = ∅. Thus q
is proper by Proposition 2.22. If K\X is locally compact, then X is locally compact by
Lemma 2.21 and Proposition 2.22. If V ⊆ X is an open set with compact closure, then
q(V ) is also open with compact closure and therefore K\X is locally compact if X is
locally compact.

Corollary 2.29. Let G be a Hausdorff topological group and let K be a compact subgroup.
Then the map

p : G −→ G/K

is closed, open and proper. Moreover G/K is locally compact if and only if G is locally
compact.

Proof. The groups K acts from the left on X = G via (k, x) 7−→ xk−1. The orbits of this
action are the left cosets gK, hence G/K is the orbit space for this action. The claim
follows now from Proposition 2.28.

Lemma 2.30. Suppose that K × X −→ X is a compact transformation group and that
x ∈ X is a fixed point of K. Then every neighborhood V of x contains a K-invariant
open neighborhood U of x.

Proof. Suppose that x is a fixed point of the K-action and that V is a neighborhood
of x. By Wallace’s Lemma 1.21 there exists an open neighborhood W of x such that
K(W ) ⊆ V . Then U = K(W ) is an open and invariant neighborhood of x.

Corollary 2.31. Suppose that G is a Hausdorff topological group and that K ⊆ G is a
compact subgroup. Then there are arbitrarily small open identity neighborhoods V ⊆ G
which are invariant under conjugation by elements of K.

Proof. The compact group K acts as a compact transformation group on G via conjuga-
tion, and e is a fixed point for this action. The claim follows thus from Lemma 2.30.
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We recall that a Hausdorff space X is called a Tychonoff space, or completely regular,
or a T3 1

2

-space if for every x ∈ X and every neighborhood V of x there exists a continuous
map

ϕ : X −→ [0, 1]

with ϕ(x) = 0 and ϕ(y) = 1 for all y ∈ X − V .

Proposition 2.32. Suppose that K ×X −→ X is a compact transformation group. If X
is a Tychonoff space, then K\X is a Tychonoff space as well.

We first make a small observation.

Lemma 2.33. Suppose that X is a set, that u, v : X −→ R are two functions which
are bounded from below, and that ε > 0. If |u(x) − v(x)| ≤ ε holds for all x ∈ X, then
|inf u(X)− inf v(X)| ≤ ε.

Proof. For every n ≥ 1 there exists a point xn ∈ X such that u(xn) − inf u(X) ≤ 2−n.
Then v(xn) ≤ inf u(X) + ε+ 2−n and thus inf v(X) ≤ inf u(X) + ε.

Proof of Proposition 2.32. Suppose that X is a Tychonoff space, that x ∈ X , and that
V ⊆ K\X is a neighborhood of q(x). There exists a neighborhood U of x with q(U) ⊆ V .
Since X is a Tychonoff space, there exists a continuous map ψ : X −→ [0, 1] with
ψ(x) = 0 and ψ(y) = 1 for all y ∈ X − U . We put ψ̃(z) = minψ(K(z)). Then ψ̃
is constant on the K-orbits and hence ψ̃ descends to a map ϕ : K\X −→ [0, 1] via
ϕ(K(z)) = ψ̃(z) = minψ(K(z)). We have ϕ(q(x)) = 0 and ϕ(q(z)) = 1 if q(z) 6∈ V . It
remains to show that ϕ is continuous. For this, it suffices to show that ψ̃ is continuous
because K\X carries the quotient topology with respect to the map q,

X [0, 1]

K\X.

ψ̃

q
ϕ

Given z ∈ X , we may consider the continuous map h : K × X −→ [0, 1] with h(g, y) =
|ψ(gz)−ψ(gy)|. Since h(g, z) = 0 holds for all g ∈ K, there exists by Wallace’s Lemma 1.21
for every ε > 0 a neighborhoodWε of z such that h(g, y) ≤ ε holds for all (g, y) ∈ K×Wε.
It follows from Lemma 2.33 that |inf ψ(K(z)) − inf ψ(K(y))| ≤ ε holds for all y ∈ Wε,
and this shows that ψ̃ is continuous at z.
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