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1 | Topological Groups

This chapter contains basic results about the point-set topology of topological groups.
Whenever we use the Hausdorff condition, this will be mentioned explicitly. However, we
do assume that locally compact spaces and compact spaces are Hausdorff.

We first consider products, subgroups and coset spaces of general topological groups.
We also review two constructions of group topologies, starting from subgroups. Then we
introduce the identity component and the group of connected components. We then turn
to van Dantzig’s Theorem: a totally disconnected locally compact group has arbitrarily
small open subgroups, and a totally disconnected compact group is profinite. Lastly,
we consider Weil’s Lemma and its application to compact subsemigroups of topological
groups.

Definition 1.1. A topological group (G, ·, T ) consists of a group (G, ·) and a topology T
on G for which the multiplication map

G×G −→ G

(g, h) 7−→ g · h = gh

and the inversion map

G −→ G

g 7−→ g−1

are continuous. We then call T a group topology on G. We can combine these two
conditions into one condition by considering the map

κ : G×G −→ G

(g, h) 7−→ g−1h.

If G is a topological group, then κ is continuous. Conversely, if κ is continuous, then the
maps g 7−→ g−1 = κ(g, e) and (g, h) 7−→ gh = κ(κ(g, e), h) are also continuous.
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Suppose that G is a topological group. For every a ∈ G, the right translation map

ρa(g) = ga,

the left translation map

λa(g) = ag

and the conjugation map

γa(g) = aga−1

are homeomorphisms of G onto itself, with inverses λa−1 , ρa−1 and γa−1 , respectively. In
particular, the homeomorphism group of G acts transitively on G. It follows that every
neighborhood W of a group element g ∈ G can be written as W = gU = V g, where
U = λg−1(W ) and V = ρg−1(W ) are neighborhoods of the identity. In what follows, we
will most of the time write G for a topological group, without mentioning the topology T
explicitly. A neighborhood of the identity element e will be called an identity neighborhood
for short. If V is an identity neighborhood, then V ∩ V −1 ⊆ V is a symmetric identity
neighborhood.

Now we study the most basic group-theoretic notions for topological groups: homo-
morphisms, products, subgroups and quotients.

Definition 1.2. We define a morphism

f : G −→ K

between topological groups G,K to be a continuous group homomorphism. Occasionally
we will have to deal with group homomorphisms between topological groups which are
not assumed to be continuous. Such homomorphism will be called an abstract homomor-
phisms . The underlying group of a topological group will be called its abstract group.
This terminology is due to Borel and Tits. In the literature, such homomorphism are
sometimes called algebraic homomorphisms .

The following local criterion for an abstract homomorphism to be a morphism is useful.

Lemma 1.3. Let G,K be topological groups and let f : G −→ K be an abstract homo-
morphism. Then the following are equivalent.
(i) The abstract homomorphism f is continuous and hence a morphism of topological

groups.
(ii) The abstract homomorphism f is continuous at one point a ∈ G, i.e. for every

neighborhood W of f(a), there exists a neighborhood V of a such that f(V ) ⊆W .

[Linus Kramer, Locally Compact Groups and Lie groups]
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Proof. It is clear that (i) ⇒ (ii), because a continuous map is continuous at every point.
Suppose that (ii) holds and that U ⊆ K is open. If g ∈ f−1(U), then f(a) = f(ag−1g) ∈
f(ag−1)U . Hence there exists a neighborhood V of a with f(V ) ⊆ f(ag−1)U . Then ga−1V
is a neighborhood of g, with f(ga−1V ) ⊆ U . Hence f−1(U) is open.

Example 1.4. The following are examples of topological groups and morphisms.
(1) The additive groups of the fields Q, R, C, and the p-adic fields Qp, endowed with

their usual field topologies, are examples of topological groups. Likewise, the multi-
plicative group of units of each of these fields is a topological group. The exponential
maps exp : R −→ R× and exp : C −→ C× are morphisms.

(2) The circle group U(1) = {z ∈ C | |z| = 1} ⊆ C× is another example of a topological
group. The map R −→ U(1) that maps t to exp(2πit) = cos(2πt) + i sin(2πt) is a
morphism.

(3) Every morphism f : R −→ R is of the form f(t) = rt, for a unique real r. This
follows from the fact that Q is dense in R, and that an additive homomorphism
f : Q −→ R is determined uniquely determined by the element r = f(1), since Q is
uniquely divisible.

(4) Every morphism f : U(1) −→ U(1) is of the form f(z) = zm, for a unique integer
m ∈ Z.

(5) As a vector space over Q, the additive group R has dimension 2ℵ0 . Hence there are
22

ℵ0 abstract homomorphisms R −→ R, most of which are not continuous.
(6) Let H denote the additive group of the reals, endowed with the discrete topology.

ThenH is a locally compact group and the identity map id : H −→ R is a continuous
bijective morphism whose inverse is not continuous.

(7) Let F be a field and let GLn(F ) denote the general linear group of invertible n×n-
matrices over F . For an n × n-matrix g, let g# denote the matrix with entries
(g#)i,j = (−1)i+j det(g′(j, i)), where g′(j, i) is the (n−1)×(n−1)-matrix obtained by
removing column i and row j from the matrix g. Then gg# = g#g = det(g)1. Hence
if F is a topological field, then κ(g, h) = g−1h = 1

det(g)
g#h depends continuously on

g and h, and therefore GLn(F ) is a topological group. In particular, the matrix
groups GLn(Q), GLn(R), GLn(C), and GLn(Qp) are topological groups.

(8) Every group G, endowed either with the discrete or with the trivial nondiscrete
topology, is a topological group. For the discrete topology, G is locally compact and
locally contractible.

Products of topological groups behave well, as the next result shows.

Proposition 1.5. Suppose that (Gj)j∈J is a family of topological groups. Then the product

G =
∏

j∈J

Gj,

[Linus Kramer, Locally Compact Groups and Lie groups]

[Preliminary Version - May 19, 2020]



6 Chapter 1

endowed with the product topology, is again a topological group. The product is Hausdorff
if and only if each factor Gj is Hausdorff, and compact if and only if each factor Gj is
compact.

For each j, the projection map prj : G −→ Gj is an open morphism. If H is a
topological group and if there are morphisms fj : H −→ Gj, for every j ∈ J , then the
diagonal map f(h) = (fj(h))j∈J is the unique morphism f : H −→ G with the property
that prj ◦ f = fj holds for all j ∈ J ,

G

H Gj.

prj

fj

f

Proof. In order to show that G is a topological group, we have to show that the map
κ : G×G −→ G that maps (g, h) to g−1h is continuous. Let κj : Gj ×Gj −→ Gj denote
the corresponding maps, which are by assumption continuous. Then we have for each j
a continuous map prj ◦ κ = κj ◦ (prj × prj),

G×G G

Gj ×Gj Gj .

κ

prj ×prj prj

κj

By the universal property of the product topology on G, this implies that κ is continuous.
The remaining claims follow from the general properties of a product of topological spaces.

We will later look into separation properties for topological groups more closely. At
this point we record the following important fact.

Lemma 1.6. A topological group G is Hausdorff if and only if some singleton {a} ⊆ G
is closed.

Proof. Suppose that {a} ⊆ G is closed. The preimage of {a} under the continuous map
(g, h) 7−→ g−1ha is the diagonal {(g, g) | g ∈ G} ⊆ G × G, which is therefore closed
in G × G. Thus G is Hausdorff. Conversely, every singleton set in a Hausdorff space is
closed.

Subgroups

Now we study subgroups of topological groups.

[Linus Kramer, Locally Compact Groups and Lie groups]
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Proposition 1.7. Let H be a subgroup of a topological group G. Then H is a topological
group with respect to the subspace topology. Moreover, the closure H is also a subgroup of
G. If H is normal in G, then H is also normal.

Proof. Let H be a subgroup of G, endowed with the subspace topology. The product
topology on H ×H coincides with the subspace topology on H ×H ⊆ G×G. Therefore
the map H ×H −→ H that maps (g, h) to g−1h is continuous. Hence H is a topological
group. The continuity of the map κ(g, h) = g−1h ensures that

κ(H ×H) = κ(H ×H) ⊆ κ(H ×H) = H.

Thus H is a subgroup. Suppose in addition that H ✂ G is normal. For a, g ∈ G we put
γa(g) = aga−1. Since the conjugation map γa : G −→ G is continuous, we have

γa(H) ⊆ γa(H) = H

for all a ∈ G. This shows that H is normal in G.

Lemma 1.8. Let G be a topological group and let A ⊆ G be a closed subset. Then the
normalizer of A

NorG(A) = {g ∈ G | γg(A) = A}
is a closed subgroup.

Proof. For a ∈ A put ca(g) = gag−1. Then ca : G −→ G is continuous and hence
c−1
a (A) = {g ∈ G | gag−1 ∈ A} is closed. Therefore

S =
⋂
{c−1
a (A) | a ∈ A} = {g ∈ G | γg(A) ⊆ A}

is a closed subsemigroup in G, and NorG(A) = S ∩ S−1 is closed as well.

The Hausdorff property is needed for the next two results. The trivial nondiscrete
topology supplies easily examples which show that both results fail for non-Hausdorff
topological groups.

Lemma 1.9. Let G be a Hausdorff topological group, and let X ⊆ G be any subset. Then
the centralizer

CenG(X) = {g ∈ G | [g, x] = e for all x ∈ X}
is closed. In particular, the center of G is a closed subgroup.

Proof. Given x ∈ X , the map g −→ [g, x] = gxg−1x−1 is continuous. Therefore CenG(x) =
{g ∈ G | [g, x] = e} is closed because {e} ⊆ G is closed. Then CenG(X) =

⋂{CenG(x) |
x ∈ X} is closed as well.

[Linus Kramer, Locally Compact Groups and Lie groups]
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Lemma 1.10. Let G be a Hausdorff topological group. If A ⊆ G is an abelian subgroup,
then the closure A is an abelian subgroup.

Proof. The commutator map (g, h) −→ [g, h] is constant on A×A and hence also constant
on the closure A× A = A×A.
Lemma 1.11. Let G be a topological group and suppose that U ⊆ G is an open subset. If
X ⊆ G is any subset, then UX and XU are open subsets. In particular, the multiplication
map m : G×G −→ G, (g, h) 7−→ gh and the map κ : G× G −→ G, (g, h) 7−→ g−1h are
open.

Proof. For each x ∈ X , the sets Ux = ρx(U) and xU = λx(U) are open. Hence UX =⋃{Ux | x ∈ X} and XU =
⋃{xU | x ∈ X} are open as well.

Proposition 1.12. Let G be a topological group and let H ⊆ G be a subgroup. Then we
have the following.
(i) The subgroup H is open if and only if it contains a nonempty open set.
(ii) If H is open, then H is also closed.
(iii) The subgroup H is closed if and only if there exists an open set U ⊆ G such that

U ∩H is nonempty and closed in U .

Proof. For (i), suppose that H contains the nonempty open set U . Then H = UH is
open by Lemma 1.11. Conversely, if H is open then it contains the nonempty open set
H . For (ii), suppose that H ⊆ G is open. Then G − H =

⋃{aH | a ∈ G − H} is also
open and therefore H is closed. For (iii) we note that H ∩U is closed in U if H is a closed
subgroup. Conversely, suppose that U ∩ H is nonempty and closed in the open set U .
Then U ∩H is also closed in the smaller set U ∩H ⊆ U . Upon replacing G by H, we may
thus assume in addition that H is dense in the ambient group G, and we have to show
that H = G. The set U −H = U − (U ∩H) is open in U and hence open in G = H. On
the other hand, H is dense in G. Therefore U −H = ∅ and thus U ⊆ H . By (i) and (ii),
H is closed in G, whence H = G.

Corollary 1.13. Let G be a topological group and let V ⊆ G be a neighborhood of some
element g ∈ G. Then V generates an open subgroup of G.

Corollary 1.14. Suppose that G is a Hausdorff topological group and that H ⊆ G is a
subgroup. If H is locally compact in the subspace topology, then H is closed. In particular,
every discrete subgroup of G is closed.

Proof. Let C ⊆ H be a compact set which is an identity neighborhood in the topological
group H . Then there exists an open identity neighborhood U in G such that U ∩H ⊆ C.
Since C is compact, C is closed in G and hence U ∩ H = U ∩ C is closed in U and
nonempty. By Proposition 1.12(iii), the subgroup H is closed.

[Linus Kramer, Locally Compact Groups and Lie groups]
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We recall that a Hausdorff space is called σ-compact if it can be written as a countable
union of compact subsets. A σ-compact space need not be locally compact; for example
the set of rational numbers Q is σ-compact in its standard euclidean topology.

Lemma 1.15. Let G be a locally compact group. Then G has a σ-compact open subgroup.
In particular, every connected locally compact group is σ-compact.

Proof. Let C ⊆ G be a compact symmetric identity neighborhood. Then H = 〈C〉 =⋃{C ·k | k ∈ N1} is σ-compact. Since C contains a nonempty open set, H is open in G.

To illustrate these results, we determine now the closed subgroups of the additive
group R.

Lemma 1.16. Let A ⊆ R be a discrete subgroup. Then A = aZ for a unique real number
a ≥ 0.

Proof. It suffices to consider the case when A 6= {0} = 0Z. We put a = inf{t ∈ A | t > 0}.
Since A is discrete and closed by Corollary 1.14, a > 0 and a ∈ A. Thus aZ ⊆ A. For a
general element b ∈ A there exists k ∈ Z such that ka ≤ b < (k+1)a. Then 0 ≤ b−ka < a
and thus b = ka. This shows that A = aZ. If a′ is a real number with 0 ≤ a′ < a then
a′Z 6= aZ.

Lemma 1.17. Let A ⊆ R be a non-discrete subgroup. Then A is dense in R.

Proof. Being nondiscrete, A has an accumulation point a ∈ A. But then 0 is also an
accumulation point of A. Hence we find for every n ∈ N1 an element an ∈ A with
0 < |an| ≤ 1

n
. Given r ∈ R and n ∈ N1, we can choose kn ∈ Z in such a way that

|ankn − r| ≤ 1
n
. Hence r is in the closure of A.

Corollary 1.18. Every proper closed subgroup of the additive group R is of the form aZ,
for a unique real number a ≥ 0.

We noted above that the product of open sets in a topological group is again open.
There is, in general, no similar property for the product of closed subsets, as the following
example shows.

Example 1.19. The additive group of the reals contains the the closed subgroups A = Z

and B = aZ, where a ∈ R is an irrational number. The subgroup A + B is not of the
form cZ, for some real number c ≥ 0, because a is not a rational number. Hence A + B
is a countable dense subgroup of R by Lemma 1.16 and Lemma 1.17, which is not closed.

However, we have the following.

[Linus Kramer, Locally Compact Groups and Lie groups]
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Lemma 1.20. Let G be a Hausdorff topological group, and let A,B ⊆ G be closed subsets.
If either A or B is compact, then AB ⊆ G is closed.

The proof uses Wallace’s Lemma, which is a very convenient tool from point-set topol-
ogy.

Lemma 1.21 (Wallace). Let X1, . . .Xk be Hausdorff spaces containing compact sets
Aj ⊆ Xj, for j = 1, . . . , k. If W ⊆ X1×· · ·×Xk is an open set containing A1×· · ·×Ak,
then there exist open sets Uj with Aj ⊆ Uj ⊆ Xj, for j = 1, . . . , k, such that

A1 × · · · × Ak ⊆ U1 × · · · × Uk ⊆ W.

Proof. There is nothing to show for k = 1. Suppose that k = 2. We put A = A1 and
B = A2 and we fix a ∈ A. For every point b ∈ B, we choose an open neighborhood
Ub × Vb of (a, b) such that Ub × Vb ⊆ W . Since {a} × B is compact, finitely many such
neighborhoods Ub1 × Vb1 , . . . , Ubm × Vbm cover {a} ×B. We put Ua = Ub1 ∩ · · · ∩ Ubm and
Va = Vb1 ∪ · · · ∪ Vbm . Then {a} × B ⊆ Ua × Va ⊆ W . Now we let a ∈ A vary. Since
A is compact, finitely many such strips Ua1 × Va1 , . . . , Uan × Van cover A × B. We put
U = Ua1 ∪ · · · ∪ Uan and V = Va1 ∩ · · · ∩ Van . Then A× B ⊆ U × V ⊆ W and the claim
is proved for k = 2.

For k ≥ 3 we apply the previous argument to A = A1 and B = A2 × · · · × Ak, and
we obtain open sets U ⊆ X1 and V ⊆ X2 × · · · × Xk with A × B ⊆ U × V ⊆ W . By
induction, we find now open sets U2, . . . Uk such that A2 × · · · × Ak ⊆ U2 × · · ·Uk ⊆ V .
Therefore A1 × · · · × Ak ⊆ U × U2 × · · ·Uk ⊆W .

Corollary 1.22. Suppose that A1, . . . , Ak are pairwise disjoint compact subsets of a Haus-
dorff space X. Then there exists pairwise disjoint open sets U1, . . . , Uk with Aj ⊆ Uj, for
j = 1, . . . , k.

In particular, we may fatten compact subsets in locally compact spaces.

Corollary 1.23. Suppose that K is a compact subset of a locally compact space X. Then
there exists an open set V ⊆ X containing K with compact closure V .

Proof. Let Z = X ∪ {∞} denote the Alexandrov compactification of X . Then K and
∞ have disjoint open neighborhoods V and W in Z, respectively. In particular, V ⊆
Z −W ⊆ X is compact.

Proof of Lemma 1.20. Suppose that A is compact and B is closed, and that g ∈ G−AB.
We have to show thatG−AB contains a neighborhood of g. By assumption, A−1g∩B = ∅.
If we put κ(g, h) = g−1h, then κ(A × {g}) ⊆ G − B. By Wallace’s Lemma 1.21 there
exists an open neighborhood V of g such that κ(A × V ) ⊆ G − B, i.e. A−1V ∩ B = ∅.
Hence V ∩AB = ∅ and the claim follows. The case where B is compact and A is closed
follows similarly.

[Linus Kramer, Locally Compact Groups and Lie groups]
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Group Topologies from Subgroups

We review two constructions of group topologies, starting from subgroups.

Definition 1.24. Let G be a topological group. We call a subgroup H ⊆ G inert if for
every g ∈ G there is an identity neighborhood U ⊆ G such that

H ∩ U = gHg−1 ∩ U.

Every normal subgroup of G is thus inert, but also every open and every discrete subgroup
is inert.

Construction 1.25. Suppose thatH is an inert subgroup of a topological group (G, ·, T ).
We put

TH = {U ⊆ G | gU ∩H is open in H for every g ∈ G}
and we claim that this is a group topology on G.

It is clear that TH is a topology on G which refines the topology T on G and that H
is open in this topology. Also, the subspace topologies on H with respect to T and TH
coincide,

TH |H = T |H.
It remains to show that TH is a group topology. For this we have to show that the map
κ(g, h) = g−1h is continuous with respect to TH .

The set N = {U ⊆ H | U is an identity neighborhood in H} is a neighborhood basis
of the identity element for the topology TH . Given W ∈ N , we find V ∈ N such that
V −1V ⊆ W , because H is a topological group. Let g, h ∈ G and put a = g−1h. Since H
is inert and since V is an identity neighborhood, there is an open identity neighborhood
Y ∈ T such that H ∩ Y = a−1Ha ∩ Y ⊆ V . Then H ∩ aY a−1 ⊆ aV a−1 and thus
U = H ∩ aY a−1 ∩ Y ⊆ aV a−1 ∩ V is in N . In the topology TH , the set gU is a
neighborhood of g and the set hV is a neighborhood of h, and

κ(gU × hV ) = U−1g−1hV = a(a−1U−1a)V ⊆ aV −1V ⊆ g−1hW.

This shows that κ is continuous at every (g, h) ∈ G×G, and thus (G, ·, TH) is a topological
group.

The previous construction refines a given group topology, using an inert subgroup.
The following construction is related. It extends a given group topology on a normal
subgroup of a group.

Construction 1.26. Suppose that N is a normal subgroup of a group G. Suppose also
that S is a group topology on N . We put

T = {U ⊆ G | gU ∩N ∈ S for every g ∈ G}.

[Linus Kramer, Locally Compact Groups and Lie groups]
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Then T is a topology on G, and the corresponding subspace topology on N coincides
with S, i.e. S = T |H . Moreover, H ⊆ G is open in this topology. We claim that T is a
group topology on G, provided that for every g ∈ G the conjugation map γg(a) = gag−1

is continuous on N .
The proof of this claim is similar to the previous example. We let N denote the

neighborhood basis of e in N with respect to the topology S. Given W ∈ N and g, h ∈ G,
we choose V ∈ N such that V −1V ⊆ W . We put U = V ∩ g−1hV h−1g. Then U is in N
because γg−1h|N is a homeomorphism of N . Moreover, gU is a neighborhood of g and hV
is a neighborhood of h. As above we conclude that

κ(gU × hV ) = (gU)−1hV ⊆ g−1hW

and this shows that κ is continuous at (g, h). Hence T is a group topology on G.

The second construction can be applied in particular if G is a group with nontrivial
center Z. Every group topology on Z can be extended to a group topology on G, such
that Z is an open subgroup.

Quotients

Suppose that H is a subgroup of a topological group G. We endow the set G/H of left
cosets with the quotient topology with respect to the natural map

p : G −→ G/H, g 7−→ gH.

Thus a subset of G/H is open if and only if its p-preimage is open. The next result is
elementary, but important.

Proposition 1.27. Let G be a topological group and let H be a subgroup. Then the
quotient map

p : G −→ G/H

is open. The quotient G/H is Hausdorff if and only if H is closed in G, and it is discrete
if and only if H is open in G.

Proof. Suppose that U ⊆ G is an open set. Then p−1(p(U)) = UH is open by Lemma 1.11,
hence p(U) is open by the definition of the quotient topology.

If G/H is Hausdorff, then {H} ⊆ G/H is closed, hence H = p−1({H}) ⊆ G is closed as
well. Conversely, suppose that H ⊆ G is closed. The map p× p : G×G −→ G/H×G/H
is open, because p is open and because a cartesian product of two open maps is again
open. The open set W = {(x, y) ∈ G × G | x−1y ∈ G − H} maps under p × p onto the

[Linus Kramer, Locally Compact Groups and Lie groups]
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complement of the diagonal in G/H × G/H . Hence the diagonal {(gH, gH) | g ∈ G} is
closed in G/H ×G/H , and therefore G/H is Hausdorff.

If H is open, then every coset gH is open and hence G/H is discrete. Conversely,
if G/H is discrete, then H , being the preimage of the open singleton {H} ⊆ G/H , is
open.

If G is a Hausdorff topological group and if H ⊆ G is a compact subgroup, then the
map p : G −→ G/H is also closed by Lemma 1.20. A more general result is proved in
Corollary ??.

Corollary 1.28. Suppose that G is a compact group and that H ⊆ G is a closed subgroup.
Then H is open if and only if H has finite index in G.

Proof. A discrete topological space is compact if and only if it is finite.

A more general result is proved below in Lemma ??, using Baire’s Category Theo-
rem. For locally compact groups, we have the following basic result about subgroups and
quotients.

Proposition 1.29. Let G be a locally compact group. Then a subgroup H ⊆ G is closed
if and only if it is locally compact. If H ⊆ G is a closed subgroup, then G/H is locally
compact.

Proof. A closed subspace of a locally compact space is again locally compact. Conversely,
a locally compact subgroup of a Hausdorff topological group is closed by Corollary 1.14.
For the last claim, suppose that H ⊆ G is a closed subgroup, and that g ∈ G is any
element. We have to show that gH has a compact neighborhood inG/H . Let V ⊆ G be an
open identity neighborhood with compact closure. Then p(V g) is an open neighborhood of
g because p : G −→ G/H is open, and thus p(V g) is a compact neighborhood of gH .

Proposition 1.30. Let G be a topological group. If N ✂ G is a normal subgroup, then
the group G/N is a topological group with respect to the quotient topology on G/N . The
quotient map p : G −→ G/N is an open morphism. The group G/N is Hausdorff if and
only if N is closed. In particular, G/N is a Hausdorff topological group.

Proof. We put κ̄(gN, hN) = g−1hN and p(g) = gN . Then the diagram

G×G G

G/N ×G/N G/N

κ

p×p p

κ̄

[Linus Kramer, Locally Compact Groups and Lie groups]
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commutes, and p◦κ is continuous. Since p is open, p×p is also open and hence a quotient
map. It follows from the universal property of quotient maps that κ̄ is continuous, and
therefore G/N is a topological group. The remaining claims follow from Propositions 1.7
and 1.27.

Corollary 1.31. If G is a locally compact group and if N ✂ G is a closed normal subgroup,
then G/N is a locally compact group.

The next result is the Homomorphism Theorem for topological groups.

Lemma 1.32. Let f : G −→ K be a morphism of topological groups, and suppose that
the normal subgroup N ✂ G is contained in ker(f). Then f factors through the open
morphism p : G −→ G/N by a unique morphism f̄ ,

G K.

G/N

f

p
f̄

The map f is open if and only if f̄ is open.

Proof. The group homomorphism f̄ exists uniquely by the Homomorphism Theorem for
groups. Since p is a quotient map, f̄ is continuous and thus a morphism. If f is open and
if W ⊆ G/N is an open set, then f(p−1(W )) = f̄(W ) is open as well. If f̄ is open, then
f is the composite of two open maps and therefore open.

Corollary 1.33. Suppose that f : G −→ K is a morphism of topological groups and that
K is Hausdorff. Then f factors uniquely through the open morphism p : G −→ G/{e},

G K.

G/{e}

f

p
f̄

Example 1.34. Suppose that K ( R is a nontrivial closed subgroup. Then K = bZ for
some b > 0 by Corollary 1.18. The compact interval [0, b] maps onto R/K and therefore
the quotient R/K is compact. We recall that the circle group is the compact abelian
group

U(1) = {z ∈ C | |z| = 1} ⊆ C×.

If we put f(t) = exp(2πit/b), then f : R −→ U(1) is a morphism with kernel K. Since
R/K is compact, the induced morphism

f̄ : R/K −→ U(1)

that maps t+ bZ to exp(2πit/b) is an isomorphism of topological groups.
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Semidirect Products

Suppose that N is a topological group. We let Auttg(N) denote the group of all automor-
phisms of N as a topological group. Suppose that K is another topological group and
that ρ : K −→ Auttg(N) is an abstract group homomorphism. If the map K ×N −→ N
that maps (k, n) to ρ(k)(n) is continuous, then the semidirect product

G = N ⋊ρ K

is a topological group with respect to the product topology on the underlying set N ×K,
and the group multiplication

(n1, k1)(n2, k2) = (n1ρ(k1)(n2), k1k2).

Furthermore, the canonical morphism G = N ⋊ρK −→ K that maps (n, k) to k is open.
The following result shows that this characterizes internal semidirect products.

Proposition 1.35. Let G be a topological group and let K,N ⊆ G be subgroups. Assume
that K normalizes N , that G = NK, and that N ∩K = {e}. Then the map

f : N ⋊K −→ G, (n, k) 7−→ nk

is a bijective morphism of topological groups. The following are equivalent.
(i) The morphism f is an isomorphism of topological groups.
(ii) The morphism f is open.
(iii) The canonical morphism f̄ : K 7−→ G/N that maps k to kN is open.

If G is Hausdorff, then (i) implies that N and K are closed subgroups of G.

Proof. The map f is a bijective group homomorphism since G is, as an abstract group,
the semidirect product of N and K. It is continuous because the multiplication in G is
continuous. If f is an isomorphism of topological groups, then f is open. If f is open,

then the morphism N ⋊K
f−−→ G

q−→ G/N is open and the commutative diagram

N ⋊K G

K G/N

f

p q

f̄

shows that the morphism f̄ is open as well. If the bijective morphism f̄ is open, then its
inverse j : G/N −→ K is continuous. The inverse of f is the continuous map g = nk 7−→
(n, k) = (gj(gN)−1, j(gN)).

[Linus Kramer, Locally Compact Groups and Lie groups]
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In order to decompose a topological group topologically as a semidirect product, one
has therefore to check that the bijective morphism f̄ is open. For this, open mapping
theorem are often helpful.

Split short exact sequences of topological groups behave well, as we show now.

Proposition 1.36. Suppose that

1 N G K 1
f

is a short exact sequence of morphisms of topological groups, with N = ker(f). If there is
a morphism s : K −→ G with f ◦ s = idK , then G is as a topological group isomorphic to
the semidirect product N ⋊ρ K, where ρ(k)(n) = s(k)ns(k)−1.

Proof. We define a morphism N ⋊ρ K −→ G via (n, k) 7−→ ns(k). Its inverse is the
morphism g 7−→ (gs(f(g))−1, f(g)).

The following example shows that an abstract product decomposition of a topological
group need not be a topological decomposition. We modify Example 1.19 as follows.

Example 1.37. Let a ∈ R be an irrational number and consider the free abelian group
G = Z+ aZ ⊆ R, endowed with the subspace topology in R. We put A = Z and B = aZ.
Then A and B are closed subgroups of the group G which is, as an abstract group, the
direct product of A and B. The canonical map f : A × B −→ G that maps (x, ay) to
x+ay is therefore bijective and continuous. It is not an isomorphism of topological groups
because G is not a discrete group, see Lemma 1.17.

Connected Components

We recall that a topological space X is called connected if ∅ and X are the only subsets of
X which are both open and closed. A subset A ⊆ X is called connected if A is connected
in the subspace topology. The closure of a connected subset is again connected.

Definition 1.38. Let x be a point in a topological space X . The connected component
of x is the union of all connected subsets of X containing x. This union is closed and
connected. We call a topological space X totally disconnected if the only connected
nonempty subsets of X are the singletons. The terminology varies and some authors call
such spaces hereditarily disconnected.

The connected component of the identity element of a topological group G will be
denoted by G◦, and we call G◦ the identity component of G. Since G acts via left transla-
tion transitively on G, the group G is totally disconnected if and only if G◦ = {e}. Every
subgroup of a totally disconnected group is again totally disconnected. We note also that
a totally disconnected group is Hausdorff.

[Linus Kramer, Locally Compact Groups and Lie groups]
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An example of a totally disconnected group is the additive group of the rational integers
Q. More interesting is the additive group of the p-adic field Qp. If F is a finite group,
endowed with the discrete topology, then G = FN is a compact totally disconnected group
with respect to the topology of pointwise convergence.

Proposition 1.39. Let G be a topological group. Then the identity component G◦ is a
closed normal subgroup, and G/G◦ is a totally disconnected Hausdorff topological group.

We call G/G◦ the group of components of G.

Proof. We put κ(g, h) = g−1h and we note that a continuous image of a connected set is
connected. Since G◦×G◦ is connected and contains the identity element, κ(G◦×G◦) ⊆ G◦.
This shows that G◦ is a subgroup. By the remark above, G◦ is closed. For every a ∈ G,
the set γa(G

◦) = aG◦a−1 is connected and contains the identity, whence aG◦a−1 ⊆ G◦.
This shows that G◦ is a closed normal subgroup.

It remains to show that G/G◦ is totally disconnected. We consider the canonical
morphism p : G −→ G/G◦ and we put H = (G/G◦)◦ and N = p−1(H). Then N is a
closed normal subgroup of G containing G◦. We claim that N = G◦. If we have proved
this claim, then H = {G◦} and thus G/G◦ is totally disconnected. The restriction-
corestriction p|HN : N −→ H is an open map, hence H carries the quotient topology
with respect to p|HN . Suppose that V ⊆ N is closed and open in N and contains the
identity. Since G◦ is connected and contains e, we have vG◦ ⊆ V for all v ∈ V . Hence
V = p−1(p(V )), and therefore p(V ) is closed and open in H . But H is connected, whence
H = p(V ) and thus V = N . It follows that N is connected, whence N = G◦.

Corollary 1.40. Let f : G −→ K be a morphism of topological groups. If K is totally
disconnected, then f factors through the open morphism p : G −→ G/G◦,

G K.

G/G◦

f

p
f̄

Proof. Since f(G◦) ⊆ K is connected, G◦ is contained in the kernel of f .

Van Dantzig’s Theorem

We show the existence of arbitrarily small open subgroups in locally compact totally
disconnected groups.

Lemma 1.41. Let G be a locally compact group and suppose that V is a compact open
identity neighborhood. Then V contains an open subgroup H ⊆ G.
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Proof. By Wallace’s Lemma 1.21, applied to the compact set V × {e} ⊆ V × V , there
exists an open symmetric identity neighborhood U ⊆ V such that V U ⊆ V . In particular,
UU ⊆ V , and thus UUU ⊆ V . By induction we conclude that for every k ≥ 1 the k-
fold product U ·k is contained in V . Hence the open subgroup H = 〈U〉 = ⋃

k∈N U
·k is

contained in V .

In order to put this lemma to work, we need a result about totally disconnected locally
compact spaces. A nonempty Hausdorff space is called zero-dimensional if every point
has arbitrarily small closed open neighborhoods. A zero-dimensional space is therefore
totally disconnected. The converse holds for locally compact spaces, as we prove below
in Proposition 1.43. We note that every nonempty subspace of a zero-dimensional space
is again zero-dimensional. Also, every zero-dimensional space is a Tychonoff space.

Lemma 1.42. Suppose that X is a compact space and that x ∈ X. Then the set

Q(x) =
⋂
{D ⊆ X | D contains x and D is closed and open}

is connected.

In a general topological space, the set Q(x) as defined above is called the quasi-
component of x.

Proof. Clearly Q(x) is closed and contains x. Suppose that Q(x) = A ∪ B, with x ∈ A
and A,B closed and disjoint. We have to show that B = ∅. By Corollary 1.22, there exist
disjoint open sets U, V ⊆ X with A ⊆ U and B ⊆ V . We put C = X − (U ∪ V ) and we
note that C and Q(x) are disjoint. For every c ∈ C we can therefore choose an open and
closed set Wc containing x, but not containing c. The open sets X−Wc cover C. Since C
is compact, there exists c1, . . . , cm ∈ C such that C ⊆ (X−Wc1)∪· · ·∪ (X−Wcm). Hence
C is disjoint from the set W = Wc1∩· · ·∩Wcm . Also, W is closed and open, and therefore
Q(x) ⊆ W . Since W is disjoint from C, we have W ⊆ U ∪ V . Now Y = U ∪ (X −W ) is
open and Z = V ∩W is open and contains B. Since X = Y ∪ Z and Y ∩ Z = ∅, the set
Y is closed and open and thus Q(x) ⊆ Y . It follows that B = ∅.

Proposition 1.43. A nonempty locally compact space is totally disconnected if and only
if it is zero-dimensional.

Proof. Every zero-dimensional space is totally disconnected. Suppose that X is locally
compact and totally disconnected. Let V be a neighborhood of a point x ∈ X . We claim
that V contains a compact open neighborhood U of x. Passing to a smaller neighborhood
if necessary, we may assume in addition that V is open and that V is compact. We put
A = V − V and we note that we are done if A = ∅, with U = V . If A 6= ∅, we make
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use of Lemma 1.42. Since X is totally disconnected and Q(x) is connected, Q(x) = {x}.
Hence for each a ∈ A, there exists a compact neighborhood Ua ⊆ V of x which does not
contain a, and which is open in V . Then

⋂{Ua | a ∈ A} ∩ A = ∅. Hence there exist
finitely many points a1, . . . , am such that U = Ua1 ∩ · · · ∩Uam is disjoint from A. Then U
is closed and open in V , and U ⊆ V . But then U is also open in X .

Now we can prove van Dantzig’s Theorem.

Theorem 1.44 (van Dantzig). Let G be a locally compact group. Then the following
are equivalent.
(i) G is totally disconnected.
(ii) G is zero-dimensional.
(iii) Every identity neighborhood in G contains an open subgroup.

Proof. By Proposition 1.43, (i) ⇔ (ii). We show that (ii) ⇒ (iii). Suppose that U ⊆ G
is an identity neighborhood. Since G is zero-dimensional, U contains a compact open
identity neighborhood V . By Lemma 1.41, there exists an open subgroup H ⊆ V and
(iii) follows. Suppose that (iii) holds and that g ∈ G − {e}. There exists an open and
closed subgroup H ⊆ G − {g}, hence there is no connected set C ⊆ G containing e and
g, and (i) follows.

Corollary 1.45. In every locally compact group G, the identity component G◦ is the
intersection of all open subgroups of G.

Proof. In general, every open subgroup H ⊆ G contains G◦, because H is also closed.
We consider the open morphism p : G −→ G/G◦ and we note that G/G◦ is totally
disconnected by Proposition 1.39. If g ∈ G − G◦, then there exists an open subgroup
K ⊆ G/G◦ − p(g) by Theorem 1.44. Then H = p−1(K) is an open subgroup of G which
does not contain g.

For compact groups there is a stronger form of van Dantzig’s Theorem.

Theorem 1.46 (van Dantzig). Let G be a compact group. Then the following are
equivalent.
(i) G is totally disconnected.
(ii) G is zero-dimensional.
(iii) Every identity neighborhood contains an open normal subgroup.

Proof. We show that (ii) ⇒ (iii). Suppose that (ii) holds and that U is an identity
neighborhood. By Theorem 1.44, there exist an open subgroup H ⊆ G which is contained
in U . Since G =

⋃
G/H is compact, G/H is finite. Let N denote the kernel of the
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action of G on G/H . Then N has finite index in G, and N =
⋂{aHa−1 | a ∈ G} is

closed. Since G/N is finite, G/N is discrete and therefore N is open, see Proposition 1.27.
Claim (iii) follows now, since N ⊆ H ⊆ U . The remaining implications follow from
Theorem 1.44.

A compact group satisfying the three equivalent conditions in Theorem 1.46 is com-
monly called a profinite group. The next result is a weak version of the Peter–Weyl
Theorem.

Lemma 1.47. Let G be a profinite group and suppose that g ∈ G is not the identity
element. Then there exist an integer n ≥ 1 and a morphism ρ : G −→ GLn(C) with
ρ(g) 6= 1.

Proof. By Theorem 1.46 there exists an open normal subgroup N ⊆ G − {g}. Then
F = G/N is a finite group and gN 6= N . Let f : F −→ GLn(C) be an injective
homomorphism, for some n ≥ 1. Such a homomorphism exists, for example via the
natural left action of F on the finite dimensional vector space CF . Then the composite

ρ = f ◦ p : G −→ G/N −→ GLn(C)

is a morphism with ρ(g) 6= 1.

Suppose that (Fi)i∈I is a family of finite groups. If we endow each group Fi with the
discrete topology, then the Fi are compact and the product

G =
∏

i∈I

Fi

is a compact group. From the definition of the product topology we see that G is a
profinite group. Conversely, every profinite group is a closed subgroup of such a product.

Proposition 1.48. Let G be a profinite group. Then there exists a family of finite groups
(Fi)i∈I and a closed injective morphism f : G −→ ∏

i∈I Fi. Hence G is isomorphic as a
topological group to a closed subgroup of a product of finite groups.

Proof. Let I denote the set of all open normal subgroups of G. We put FN = G/N and
fN(g) = gN , for every N ∈ I. Then each FN is a finite group and the fN fit together
to a diagonal morphism f : G −→ ∏

N∈I FN . Since the open normal subgroups form a
neighborhood base of the identity in G by Theorem 1.46, the morphism f is injective.
Since G is compact, f is closed.
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Weil’s Lemma

Suppose G is a Hausdorff topological group and that A ⊆ R is a closed subgroup. Thus
A = aZ for some real number a ≥ 0 or A = R by Corollary 1.18. If f : A −→ G is
a morphism with nontrivial kernel K, then f factors through the canonical morphism
p : A −→ A/K,

A G

A/K.

f

p
f̄

Then A/K ⊆ R/K is compact, as we showed in Example 1.34. Therefore the induced
morphism A/K −→ f(A) is an isomorphism of topological groups. If we put

A≥r = {a ∈ A | a ≥ r}

for r ∈ A, then K + A≥r = A and thus f(A) = f(A≥r). Weil’s Lemma extends these
facts.

Theorem 1.49 (Weil’s Lemma). Let A ⊆ R be a closed subgroup and suppose that
f : A −→ G is a morphism from A to a locally compact group G. Then either f(A) is
a closed noncompact subgroup and the corestriction A −→ f(A) is an isomorphism of
topological groups, or f(A) is compact and f(A) = f(A≥r) holds for every r ∈ A.

Proof. If f is not injective, then the remarks preceding this theorem show that f(A) is
compact and then the claim is true. It remains to consider the case where f is injective.
If A = {0} there is nothing to show. Hence we may assume that A 6= {0}. Replacing G
by the locally compact abelian group f(A), we may as well assume that f(A) is dense in
G and that G is abelian, see Lemma 1.10. We note that U ∩ f(A) 6= ∅ holds whenever
U ⊆ G has nonempty interior and we distinguish two cases.

Case 1. There is a nonempty open set U ⊆ G such that f−1(U) has an upper bound.
We choose u ∈ f(A) ∩ U . Then W = (u−1U) ∩ (U−1u) is an open identity neighbor-

hood and V = f−1(W ) is bounded and open. Hence f(V ) ⊇ f(A) ∩ W is a compact
identity neighborhood of f(A). Then f(A) ⊆ G is locally compact and therefore closed
by Corollary 1.14. Therefore f(A) = G and f is bijective. The restriction-corestriction
f : V −→ f(V ) is a homeomorphism because V is compact, and W ⊆ f(V ) is an identity
neighborhood. Hence the inverse of f is continuous at the identity, and therefore the
inverse of f is a morphism by Lemma 1.3.

Case 2. ∅ 6= f−1(U) ∩ A≥r holds for every r ∈ A and every nonempty open set U ⊆ G.

Then f(A≥r) = G. We claim that G is compact. Let V ⊆ G be a compact identity
neighborhood. For every g ∈ G and r > 0 we have gV −1 ∩ f(A≥r) 6= ∅, whence G =
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f(A≥r)V . Therefore there is a finite set X ⊆ A≥r such that V ⊆ f(X)V . We put
m = max(X) and we claim that

(1) G = f(A ∩ [0, m])V −1.

Given g ∈ G, we put a = min(A≥0 ∩ f−1(gV )). Then f(a) ∈ gV and thus f(a) ∈ gf(x)V
for some x ∈ X . Hence f(a− x) ∈ gV . Since x ≥ r > 0, we have a− x < a and therefore
a−x < 0, whence 0 ≤ a < m. Therefore g ∈ f(a)V −1 ⊆ f(A∩ [0, m])V −1 and (1) is true.
Since f(A ∩ [0, m]) is compact and V −1 is compact, G is compact.

The following result about compact subsemigroups in topological groups is an imme-
diate consequence.

Proposition 1.50. Suppose that G is a Hausdorff topological group and that ∅ 6= S ⊆ G
is a compact subsemigroup. Then S is a subgroup.

Proof. If s ∈ S, then the cyclic group 〈s〉 generated by s is contained in the compact set
S−1 ∪ {e} ∪ S. Hence 〈s〉 has compact closure H = 〈s〉 in G. We consider the morphism
f : Z −→ H that maps k to f(k) = sk and we note that C = {sk | k ≥ 1} ⊆ S ∩ H is
compact. By Weil’s Lemma 1.49 we have 〈s〉 ⊆ H = C. Hence S is a subgroup.
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