PROJECTIVITIES OF GENERALIZED POLYGONS

Norbert Knarr

In this paper we determine the groups of projectivities of all finite
Moufang polygons. Generalized polygons have been introduced by J. Tits in
[9], where he also defined perspectivities and projectivities of these
structures. We start with the definition of projectivities of generalized
polygons and derive some of their basic properties. The groups of projec-
tivities of generalized polygons turn out to be doubly transitive permu-
tation groups. These groups are not in general triply transitive; simple
counterexamples are provided by the finite generalized quadrangles asso-
ciated to orthogonal polarities in four-dimensional projective spaces of
odd characteristic. In section 2 we study Moufang polygons and show
that all their even projectivities are induced by collineations. For the
finite Moufang pelygons, this information allows to determine explicitly

the groups of projectivities.

1. GENERALIZED POLYGONS AND THEIR PROJECTIVITIES.

Let P=(P,L,I) be an incidence structure, i.e. P and L are disjoint sets
and T is a subset of PxL. Instead of (x,y)€I we usually write xIy.
Put V=PyL. The elements of V are called vertices. Let s be any natural
number. An s-path in P 1is a sequence Z=(XO,...,XS) of vertices x, such

that inxi+ and Xi#xi+2 for i=0,...,8-1. We say that I joins Xq and Xge

1
Two vertices x and y are at distance s, denoted as d(x,y)=s, if there is
an s-path joining x and y and s is minimal w.r.t. this property. We set
Fi(x}:=[y6 V|d(x,y)=i} for x€V and i€N, Instead of Fl(x} we usually

write I'(x).

P 4is a generalized n-gon if the following hold:
(1) For all x,y€V we have d(x,y)sn.
(2) If d(x,y)=s<n, then the s—path joining x and y is unique.
(3) We have |['(x)|z3 for all x€V.

Sometimes these structures are called thick generalized n-gons where (3)
is referred to as thickness, The definition of generalized n-gon is obvi-
ously selfdual; the dual of a generalized n-gon P will be denoted by 7%
Let x,y€V with d(x,y)=n. For all z€&['(x) there is a unique (n-1)-path

(z=x0,...,xn_2,xn_1=y) joining z and y. Define [x,y](z):xn_z. The mapping
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[X,Y]i [: (x) > F(Y)
defined in this way is called the perspectivity from x to y. Given a se-

quence  Xp,...,xp of vertices with d(xi,xi+l)=n for i=0,...,k-1 one
can form the product of the perspectivities [XO’Xl]""’[xkﬁl’xk] in this
order. We denote this product by [xo,xl,...,xk] and call it a projecti-

vity., For Xp=%, =% such a projectivity is a bijection of TI'(x). The set of
all these bijections forms a group Il(x) which we call the group of pro-
jectivities of x. A projectivity is called even if it is the product of
an even number of perspectivities, The even projectivities in I[I(x) form
a subgroup JT+(x)§ M{x). For odd n we always have H+(x)= M{x), whereas

H+(x) is a normal subgroup of II(x) of index at most 2 for even n.
The following Lemma is obvious.

LEMMA 1.1: Let x,y€V and let o:I'(x)+ I'(y) be a projectivity. Then
we have I(y)=T(x)° and H+(y)=lT+(x)U.

Thus for odd n there is, up to isomorphism of permutation groups, just
‘one group of projectivities; this group will be denoted by II( 7). For
even n there are four groups to be considered, N(7) resp,]l+(f)) de-
notes the abstract permutation group which is isomorphic to II(g) resp.
H+(g) for some line g of P . As the points of P are the lines of P*  the
abstract permutation groups Il (p) and ]l+(p) for a point p of P are de-
noted by II( P*) and H+( P,

LEMMA 1.2: The grbups I (x) and ]I+(x) are doubly transitive permutation
groups for all x€V.

PROOF: Certainly II+(x) has no fixed points. Hence it suffices to show
that for all p€l(x) the stahilizer H+{x) is transitive on T(x)\{pl.
Choose y€I'(p)\(x} and.z€V with d(x,2)=d(y,z)=n. Let a,b€ ['(x)\{p), and
define c:=[x,z,y](a). There is a (2n-4)-path (b:ao,al,...,azn_4=c) join-
ing b and c¢. Choose wEF(an_z)\[anﬁS,an_l]‘ Then [x,z,y,w,x] fixes p and

maps a to b.

In general neither I[+{x) nor II(x) will be triply transitive, cp. Th,3.1.

Let @:V + V be a collineation of # . A line g€&L is called an axis of ¢
if o fixes every point incident with g. A center of a collineation is
defined dually,

LEMMA 1.3: Let o©:V + V be a collineation of P .Assume that o possesses

an axis g€ L. Then the restriction of ¢ to [ (h) is an even projectivity

i
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PROOF: Let x%€ V with d(x,g)=d(x,h)=n. Then U| T (x) coincides with the
projectivity [x,g,0(x)], and o] T (h) coincides with [h,x,g,0(x),o(h)].

We will now derive some conditions which assure that T[+(x) and I (x) co-
incide. Let ” be a generalized n-gon with n=2m even., Let x,y€ V with
d(x,y)=2m, The span of x and y is the set '
sp(x,y)i=(z€ V| T ()Nl (2)=T (Onl (y)) ylxy).
The pair (x,y) is called regular if the following holds:
sp(x,y)=l‘m(a)r\Fm(b) for all a,bG]fm(x)r\Fm(y) , a#b.

P is called regular if any pair of lines of maximum distance is regular.

LEMMA 1.4: Let x,vy€V with d(x,y)=n. Assume that |sp(x,y)l%3. Then we
have II+(x)s]T(x).

PROOF: Let z€ sp(x,y)\{x,v). It follows from the definition of sp(x,y)
that [x,y]=[x,z,y]. Thus the identity in Il (x) can be written as a prod-

uct of three perspectivities, and the result follows.

COROLLARY 1.5: Assume that P is regular. Then we have II(P) = H+(P Y

2, MOUFANG POLYGONS.,

The notations and definitions in this section are taken from [13] and
[14]. Let P be a generalized n-gon. The n-paths of P are called roots,
and the closed (2n-1)-paths, i.e. paths (XD""’XZH—l) with xoj[xzn_l,

are called apartments. Let ¢=(x0,...,xn) be a root of P . A collineation
T of P is called a root automorphism w,r.t. © if T fixes all vertices
in F(xl)\)...gJF(xn)l). The group of all root-automorphisms w.r.t.- ¢ is
denoted by U(®). This group acts semiregularly on the apartments con-
taining ¢ ; if the action is even regular U(®) is said to be a transi-
tive root group. P is called a Moufang n-gon if all root groups of P

are transitive. If P is a Moufang polygon, then the group generated by
all root automorphisms is denoted by S( P); we call it the little projec—

tive group of 7.

Let ” be a Moufang n-gon and let Z=(x0,...,x 1) be a fixed apartment

2n—

of 7., Put & i:=(xi,...,xi+n) for i€ IN, where indices are taken mod 2n.

Define U, :=U(®,) and U[i,j]=<Uk|iék§j>.

LEMMA 2.1: U

[1,n-1] acts transitively on Fn(xn).
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PROOF: Let yET n(xn)' There is an n-path (xn,yl,...,yn=y) joining x and

y. Define inductively a sequence of mappings T iE Ui’ i=1,...,n, as fol-

lows: Tl is the unique elemgnt in U1 which maps ¥y to X g TE T has

is the unique element -in Ui+1 which maps

been constructed, then T.
i+l

(T1°...°Ti)(yi+1) to X .q+ Now T=Tq%:®Ty maps y =y to Xy X0

LEMMA 2.2: Let P be a Moufang n-gon, let x,yEV and let o: [ (x)* I (y)
be an even projectivity. Then there exists a collineation T€ S(P ) such
that 0=1|p x)°

PROOF: It suffices to prove the assertion for products of two perspec—
tivities. Let O=[x,a,yl,

that there exists a collineation T€ S( P ) which maps x to ¥ and which

fixes all vertices incident with a. (Notice that all elements of U[1 ai]
,n—

fix F(xn) elementwise.) Hence 0= T‘ T (x)"
The next result follows immediately from Lemma 1.3 and Lemma 2.2,

PROPOSITION 2.3: Let P be a Moufang polygon. Then H4I P) is permutation
isomorphic to the group which is induced by the stabilizer of a line in

S(P) on the points incident with that line.

3. FINITE MOUFANG POLYGONS.

A1l finite Moufang polygons have been determined by Fong and Seitz [3].

They are all associated with groups of Lie type.

Let P be a finite Moufang n-gon and depnote by 5 its little projective
group. Let E=(x0,...,x2n_l) be a fixed apartment of P, Assume that Xq

and SX .
1 1 n+l
same permutation group on F{xl). By [3:§7] the group H=S

is a line., It follows from Lemma 2.1 that Sx induce the

X1 %541 7072
is abelian, It follows jmmediately that the two point stabilizer in
II+( P?) is abelian.
Artin-Zorn Theorem for
H+(P ) is one of the groups PSL(2,q),
Sz(q).

A finite generalized polygon has order (s,t),

(This result may be yiewed as geometric version of an
generalized polygons.) From [3: 7F] we infer that
PGL(2,q), PSU(3,a), PGU(3,q) or

if each line is incident

with s+l points and each point is incident with t+l lines.

THEOREM 3.1: The groups of projectivities of the finite Moufang polygons

are given by the following table:
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where d(x,a)=d(y,a)=n. From Lemma 2.1 we infer

n P
3] Pe(2,
4 | W(q)
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i of the finite Moufang pelygons

n P S(P) | (1) wr(P) P )

3 | PG(2,9) PSL(3,q) (q,9) PGL(2,q) PGL(2,q)

4 | W) PSP(4,q) | (a,9) | POL(2,q) | POL(2,q)
Q(4,q9) PQ(5,q) (a,9) PSL(2,q) PSL(2,q)
H(3,0) | PSUC4,) | (a%q) | PSL2,q) | PSL(2,q%)xa<o>
G, | Pa6,a) | (g.a®) | PEL(2,q) | PGL(Z,0)
H4,q) | PSUG,Q) | (al,a®) | PeL(2,q%) | POL(2,0%)a<o>
H(4, 0% | PSUCS,@) | (a2,q%) | POUG3,0) | PGUC3,q)

6 | H(q) Gy(a) (a,9) | PGL(2,9) PGL(2,q)

H(q)* G,y(a) (¢,9) | PCL(2,q) PGL(2,q)
@ | @) | Pen,e®) | poncz,ed)
@ | @ | Pl | PeL2,0)
8 7@ | (00D | PeL2,0) | PEL(Z,0)
@ | o | s s2(a)

The names for the generalized quadrangles are taken from [5]. There seem
to be no special names for the generalized polygons associated with the
groups 3Da(q) and 2Fa(q). The table consists of dual pairs, with the ex—
ception of the first line. The number q denotes an arbitrary prime power;
only in the n=8 case q is restricted to an odd power of 2. All groups act
in their natural doubly transitive permutation representation, ¢ denotes

the unique involutorial automorphism of a field with q2 elements.
PROOF: a) Generalized octagons.

Let P be the Moufang octagon of order (q,qz) which is associated with
2FA(q). Let Z=(k0,...,x15} be an apartment of P and assume that g is a

line. The group <U > is isomorphic to SL(2,q) and acts effectively on

1Y
F(xl). Similarly <U
I'(xg).
SL(2,q) and PGL(2,q) coincide, and we conclude that Tt p)=PCL(2,q) and

1+ p*)=Sz(q).

,U,> is isomorphic to Sz(q) and acts effectively on
0’8

This is proved in [10]. Because q is a power of 2, the groups

The group of outer automorphisms of PGL(2,q) as well as Sz(q) is isomor-
phic to the automorphism gfeup of IFq. As q is an odd power of 2, this
group has odd order. Thus neither H+(i)) nor H*Ii’*) are subgroups of
index 2 in larger permutation groups, and we have (P )= nt(”) and

(p*) =T (P*).
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b) Generalized hexagons.

Let 7 =(P,L,I) be a finite Moufang hexagon of order (s,t), and let 5 be
group. Up-to duality, we have either (s,t)=(q,q)

its little projective
3
D,(q). Let x,y€P with d(x,y)=6 and

and S=G2(q), or (s,t)s(qB,q) and 5=
let a,b€ I'(x) with a#b. We want to show that both II+(x) and II+(a) are
triply transitive. The following equations are well-known:
I5|=s33(s2-1) (t%-1) (1tsts’t?)
|PI=(5+1)(l+st+szt2)
|F6(x)|=53t2.
We conclude that the group HSSx,y,a,b
unique point in F(a)nrh(y). Assume that T[+(x) or 1l
transitive. Then we can find w€ I'(a)\{x,z} and c€T (x)\{a,b) such that
Hw,c Ww#=id, The acticn of ¥ on T(a) resp. I (x) is
equivalent to the actiom of an element of PGL(2,s) resp. PGL(2,t), hence
But then U is the identity on P

has order (s-1)(t-1). Let z be the
+(a} is not triply

contains an element

¥ induces the identity on both sets.
and on L, and we arrive at a contradiction. Thus we have 11+(P )=PGL(2,s)
] all Moufang hexagons

and TT(P%)=PGL(2,t). By a result of Ronan [7: 5.9
y=1%(P) and

are regular, thus it follows from Corollary 1.5 that nmeeP
M(P*) = NH(P*).
c) Generalized quadrangles.

Generalized quadrangles are not so easy Lo handle as generalized hexagons

and octagons. This is mainly due to the fact that the Schur multiplier of
the little projective group of a finite Moufang quadrangle is not trivial,

This leads to smaller groups Hj indeed, the table above shows that H does
not always act tranmsitively on I'(x)\(a,b}.

Thus we appreach generalized quadrangles via their embeddings into po-

larities of projective spaces. Fortunately, for finite quadrangles we on-

1y have to consider symplectic and unitary polarities.

Let V be a vector space of dimension dz4 over a field T and let £:VxV =+ F

be a nondegenerate sesquilinear form of index 2. Define an incidence

structure P=(P,L,T) by taking as points and lines all 1-dimensional resp.

2-dimensional totally isotropic subspaces of V with the natural incidence.

Then 7P is a Moufang quadrangle, and, up to duality, all finite Moufang
quadrangles arise in this way. There are three cases to be considered:
(1) d=4 and f symplectic
(2) d=4 and f unitary
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(3) d=5 and £ unitary
In case (1) we put ]F|:q, and in the other two cases we put JF[:qz, De-
note by G the group Sp(4,q) in case (1), SU(4,q) in case (2) and SU(5,q)

in case (3).

First we determine the groups H4I P) and M(P). Let. g and h be lines of
P with d(g,h)=4. It follows from Lemma 2.1 that both Gg and G h induce

]I+(g) on ['(g). We can choose a basis (el,...,ed) of V such that the

following hold:
Yo T J- — 2 |
g—(el,e2>, h—<e3,e4>, (g@h) —<e5> in case (3){

f(el,33)=f(ez,e4)zl, and f(el,ea)mf(e2,83)=0.

The matrix of f w.r.t. this basis looks as follows:

I

el
J)

where I denotes the 2x2 identity matrix, and g=+1 if f is unitary and
€ =1 if f is symplectic. In case (3) we can choose J=1, whereas in the
other two cases J is considered to be absent., Now every element of Gg,h
is described by a matrix of the form

A

M= B

cJ

where A,B€ GL(2,F) and c€ F* in case (3);; again ¢ is considered to be

absent in the other cases.
If f is symplectic, then the condition for M to lie in G
A )" ). 1)
[ BHI ][ Bt] [—I ]
ABt=I. It follows at once that we have II+(g)=PGL(2,F) in this case.
A,u€F, then

reads
]

i.e.

Let
( ¢ a
dejtuey)  =<e,ey,peq-de,>  an
[g,h](<Ae1+u92>)s<ues—ke4>.

The linear mapping described by the symplectic matrix

maps g to h and induces the perspectivity [g,h], hence Ii(g) and H+(g)

coincide.
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if f is unitary, then M lies in G h if

A 1 A" V[ 1
B o||T BY =1t (1)
c J c J
and
7 detA+detBec=1 , (2)
where in case d=4 we pﬁt c=1. Now (1) is equivalent to
AB®=T (3)
and
ce=1 . (&)
From (3) we get
det (ABY) =detA.detB=1 , (5)
und substituting (5) into (2) leads to
(6)

detA'detA_l’c=l v

Assume that F has order f.
ained in the subfield of F of order q. Every element in thlS

In case d=4 we obtain from (6) that detA is
always cont
subfleld is a sgare in ¥, and this fact 1mplles that II (g) PSL(Z,q ) in

ase (2). Now let d=5. Then for any A€ GL(2, F) we can find c€F such that

(4) and (6) hold. Thus we have 1! (g) PGL(Z,q ) in case (3).

Let A,MET, then we have
[g,h](<he +le >) <ue Ae4> 3
This perspectivity is 1nduced by the mapping
PV > V.(xl,...,xd) + (- xa,x3,x2,—x1 ...,xd)

The matrix

has determinant +1, therefore the group generated by‘SU(d,q):gnd Y con-

tains the mapping
T:V +—V:(x1,...,xd} > (gl,...,id) .

Tt follows that I(g) is the semidirect
g:F + Fix » x.

product of H+(g) by the group

generated by the automorphism

Now we determine the groups ﬂ+( p%) and I (P*). Let x and y be points

of p with d(x,y)=4., The group Gx 7 induces H+(x) on I'(x).
3
.,ed) of V such that the following hold:

It is possi-

ble to choose a basis (el,..
x=<e1>, y_<e2>, (xeay) —<e ..,ed>, and f(el,ez)zl.
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Denote the restriction of f to (x®y) by f£'. There is a natural corre-
spondence between T (x) and the 1-dimensional isotropic subspaces of the
,£'). The matrix of f w.r.t.

metric vector space ((x@y) the basis

(el,...,ed) looks as follows:

1

JJ
where g=+1 if f is unitary and g=-1 if £ is symplectic, and J describes
£l
If f is symplectic, then every linear mapping which preserves f' can be
extended to a linear mapping which fixes x and y and preserves f. Hence

we conclude that H'+(x)=PSp(2,F)=PSL(2,F) in this case.

Now let f be unitary. Then every element of SU(d,F) which fixes x and y

is described by a matrix of the form

a

M= b

¢l ,

where a,b€F, C€ CL(d-2,F), and

ab=1 , (1)

cict=r (2)

a*b*detC=1 . (3
From (1) and (3) we infer that

detC=ara"! . (&)

Now detC*detC=1, and it follows from Hilbert's theorem 90 that for every
C€U(d-2,F) there are a,b€F such that M is in SU(d,F). Hence we have
II+(x)ﬂPU(de,F)=PGU(d—2,F). Now PGU(2,q) is well-known to be isomorphic
to PGL(Z,q). In case (1) and in case (2), P * is known to be regular, and
in case (3) we have |sp(x,y)|=q+1 ([5: 3.3.1]). Thus it follows from Lem-
ma 1.4 that IT(P2*)= H+( P%) in all three cases.

d) Projective planes.

The first line of the table has been taken up for the sake of complete-
ness. Everything is well-known in this case.

REMARKS .

1. In view of Witt's theorem it is remarkable that there exist genera-

lized quadrangles which can be embedded into projective spaces and have
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proper subgroups of PGL(2,F) as groups of even projectivities.

2. The hexagons and the octagons admit a treatment similar to the one
given for the generalized quadrangles. The finite Moufang hexagons are
embedded into trialities of D,-geometries just by construction [9]. Re-
cently, Sarli [8] has announced that the finite Moufang octagons can be
embedded into polarities of metasymplectic spaces.

3. The classical von Staudt theorem states that a projective plane is
pappian if and only if its group of projectivities is sharply triply
transitive. A result pointing in the same direction has been obtained by
Tits in [11: 9.6]; he characterizes in terms of projectivities those gen-
eralized quadrangles whose duals can be embedded into orthogonal polari-
ties.

4. Tn view of the results obtained in [4] it seems plausible to conjec-
ture that the group of projectivities of a finite generalized non-Moufang

polygon always contains the alternating group.
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