Das affine Gebäude vom Typ \tilde{A}_1

Jonas Flechsig

Seminar - Gruppentheorie und Geometrie - Coxetergruppen und Gebäude

January 16, 2018

To-Do-List

- ► Gebäude (als Simplizialkomplexe)
 - ightarrow Charakterisierung der Gebäude vom Typ $ilde{A}_1$
- ▶ Tits-Systeme
 - $o \mathit{SL}_2(\mathbb{Q})$ besitzt Tits-System "vom Typ \tilde{A}_1 "
 - ightarrow Assoziation eines Gebäudes zum Tits-System
- lacktriangle Tits-Systeme "vom Typ $ilde{A}_1$ " sind Amalgame
 - \rightarrow Assoziation eines Baumes zum Amalgam
 - \rightarrow Vergleich: Gebäude vs. Baum

Coxetersysteme

▶ **Erinnerung:** Coxetersystem $(W, S) \leftrightarrow$ Coxetermatrix $M \leftrightarrow$ Coxetergraph Γ .

Coxetersysteme

- ▶ **Erinnerung**: Coxetersystem $(W, S) \leftrightarrow$ Coxetermatrix $M \leftrightarrow$ Coxetergraph Γ .
- Im Folgenden wichtig:

$$I_{2}(m)$$
: $\stackrel{m}{\circ}$ $< s, t | s^{2}, t^{2}, (st)^{m} > \rightsquigarrow (D_{m}, \{s, t\})$
 \tilde{A}_{1} : $< s, t | s^{2}, t^{2} > \rightsquigarrow (D_{\infty}, \{s, t\})$
 \tilde{A}_{2} : $< (S | r^{2}, s^{2}, t^{2}, (rs)^{3}, (st)^{3}, (rt)^{3} >, S)$
 $mit S = \{r, s, t\}.$

Coxetersysteme

- ▶ **Erinnerung**: Coxetersystem $(W, S) \leftrightarrow$ Coxetermatrix $M \leftrightarrow$ Coxetergraph Γ .
- Im Folgenden wichtig: Coxetergraph Coxetersystem

► Im Folgenden gilt stets: (W, S) ist ein Coxetersystem mit Coxetergruppe W und Erzeugermenge S.

Simplizialkomplexe

▶ **Definition**: Sei X eine Menge und Δ eine Teilmenge von $\mathcal{P}(X)$.

 $\frac{\Delta \ \underline{\mathsf{Simplizialkomplex}}}{\mathsf{abgeschlossen}} : \Leftrightarrow \left(\Delta, \subseteq\right) \ \mathsf{bezüglich} \ \mathsf{Abstieg}$

Allgemeiner: Δ' Simplizialkomplex : \Leftrightarrow $(\Delta', \leq) \cong (\Delta, \subseteq)$.

Simplizialkomplexe

- ▶ **Definition**: Sei X eine Menge und Δ eine Teilmenge von $\mathcal{P}(X)$.
 - $\frac{\Delta \ \underline{\mathsf{Simplizialkomplex}} :\Leftrightarrow (\Delta,\subseteq) \ \mathsf{bezüglich} \ \mathsf{Abstieg}}{\mathsf{abgeschlossen}}.$

Allgemeiner: Δ' Simplizialkomplex : \Leftrightarrow $(\Delta', \leq) \cong (\Delta, \subseteq)$.

- ▶ $a \in \Delta$: \Leftrightarrow Simplex der Dimension #a 1.
- Dimension des Simplizialkomplexes Δ:

$$dim(\Delta) = \max\{dim(a)|a \in \Delta\}.$$

Simplizialkomplexe

- ▶ **Definition**: Sei X eine Menge und Δ eine Teilmenge von $\mathcal{P}(X)$.
 - $\Delta \ \underline{\mathsf{Simplizialkomplex}} : \Leftrightarrow \big(\Delta, \subseteq\big) \ \mathsf{bezüglich} \ \mathsf{Abstieg} \\ \mathsf{abgeschlossen}.$

Allgemeiner: Δ' Simplizialkomplex : \Leftrightarrow $(\Delta', \leq) \cong (\Delta, \subseteq)$.

- ▶ $a \in \Delta$: \Leftrightarrow Simplex der Dimension #a 1.
- Dimension des Simplizialkomplexes Δ:

$$dim(\Delta) = \max\{dim(a)|a \in \Delta\}.$$

► Beispiel:

1-dim. Simplizialkomplexe \leftrightarrow kombinatorische Graphen

Simplizialkomplexe über S

▶ Seien Δ_1 , Δ_2 Simplizialkomplexe.

 $\varphi: \Delta_1 \to \Delta_2 \ \underline{\text{simpliziale Abbildung}} \\ :\Leftrightarrow \varphi \ \text{ordnungs- und dimensionserhaltend}.$

Simplizialkomplexe über S

▶ Seien Δ_1 , Δ_2 Simplizialkomplexe.

$$\varphi: \Delta_1 \to \Delta_2$$
 simpliziale Abbildung
: $\Leftrightarrow \varphi$ ordnungs- und dimensionserhaltend.

▶ Sei S eine Menge und Δ ein Simplizialkomplex.

 Δ Simplizialkomplex über S

 $:\Leftrightarrow$ es gibt simpliziale Abbildung $t:\Delta \to \mathcal{P}(S)$ (Typfunktion).

Simplizialkomplexe über S

▶ Seien Δ_1 , Δ_2 Simplizialkomplexe.

$$\varphi: \Delta_1 \to \Delta_2$$
 simpliziale Abbildung

 $:\Leftrightarrow \varphi \text{ ordnungs- und dimensionserhaltend}.$

▶ Sei S eine Menge und Δ ein Simplizialkomplex.

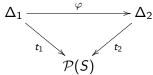
 Δ Simplizialkomplex über S

 $:\Leftrightarrow$ es gibt simpliziale Abbildung $t:\Delta \to \mathcal{P}(S)$ (Typfunktion).

▶ Seien Δ_1 , Δ_2 Simplizialkomplexe über S mit Typfunktionen $t_i : \Delta_i \to \mathcal{P}(S)$.

$$arphi:\Delta_1 o \Delta_2$$
 Homomorphismus über S

 $:\Leftrightarrow \varphi$ simpliziale Abbildung, sodass folgendes Diagramm kommutiert:



Coxeterkomplexe

▶ **Definition**: Sei \mathcal{U} offene Überdeckung eines topologischen Raumes X.

 $\underline{\mathsf{Nerv}}\ \mathcal{N}$ (Simplizialkomplex) der offenen Überdeckung \mathcal{U} :

$$\mathcal{N}(\mathcal{U}) := \{\{U_1, ..., U_m\} | \bigcap_{k=1}^m U_k \neq \emptyset\}.$$

Coxeterkomplexe

▶ **Definition**: Sei \mathcal{U} offene Überdeckung eines topologischen Raumes X.

 $\underline{\mathsf{Nerv}}\ \mathcal{N}\ (\mathsf{Simplizialkomplex})\ \mathsf{der}\ \mathsf{offenen}\ \ddot{\mathsf{U}}\mathsf{berdeckung}\ \mathcal{U} \colon$

$$\mathcal{N}(\mathcal{U}) := \{\{U_1, ..., U_m\} | \bigcap_{k=1}^m U_k \neq \emptyset\}.$$

▶ Betrachte: X = W mit diskreter Topologie und $\mathcal{U} = \{wW_{S-\{s\}} | w \in W, s \in S\}$ mit $W_{S-\{s\}} = \langle S - \{s\} \rangle$

Dann heißt $\Sigma(W,S) := \mathcal{N}(\mathcal{U})$ Coxeterkomplex.

Coxeterkomplexe

▶ **Definition**: Sei \mathcal{U} offene Überdeckung eines topologischen Raumes X.

 $\underline{\mathsf{Nerv}}\ \mathcal{N}\ (\mathsf{Simplizialkomplex})\ \mathsf{der}\ \mathsf{offenen}\ \ddot{\mathsf{U}}\mathsf{berdeckung}\ \mathcal{U} \colon$

$$\mathcal{N}(\mathcal{U}) := \{\{U_1, ..., U_m\} | \bigcap_{k=1}^m U_k \neq \emptyset\}.$$

▶ Betrachte: X = W mit diskreter Topologie und $\mathcal{U} = \{wW_{S-\{s\}} | w \in W, s \in S\}$ mit $W_{S-\{s\}} = \langle S - \{s\} \rangle$

Dann heißt $\Sigma(W,S) := \mathcal{N}(\mathcal{U})$ Coxeterkomplex.

▶ Elemente in $\Sigma(W, S)$ haben die Form:

$$\{w_1W_{S-\{s_1\}},...,w_nW_{S-\{s_n\}}\} = \{wW_{S-\{t\}}|t \in T = \{s_1,...s_n\}\}$$

Eigenschaften Coxeterkomplexe

Ordnungsisomorphie:

$$\begin{split} &(\Sigma(W,S),\subseteq)\cong (\bigcup_{T\subseteq S}W/W_T,\leq),\\ &\{wW_{S-\{t\}}|t\in T\}\mapsto wW_{S-T}\\ &\text{wobei }wW_T\leq w'W_{T'}\overset{\text{Def.}}{\Leftrightarrow}wW_T\supseteq w'W_{T'}. \end{split}$$

Eigenschaften Coxeterkomplexe

Ordnungsisomorphie:

$$\begin{split} &(\Sigma(W,S),\subseteq)\cong(\bigcup_{T\subseteq S}W/W_T,\leq),\\ &\{wW_{S-\{t\}}|t\in T\}\mapsto wW_{S-T}\\ &\text{wobei }wW_T\leq w'W_{T'}\overset{\mathsf{Def.}}{\Leftrightarrow}wW_T\supseteq w'W_{T'}. \end{split}$$

▶ **Beispiel:** Coxeterkomplex $\Sigma(W, S)$ Simplizialkomplex über S mit Typfunktion:

$$t: \Sigma(W,S) \to \mathcal{P}(S), wW_{S-T} \mapsto T.$$

Definition:

Sei Δ Simplizialkomplex über S, \mathcal{A} Menge von Unterkomplexen (Apartmentsystem).

 Δ heißt Gebäude vom Typ ($W,S)\!\!$, wenn folgende Bedingungen erfüllt sind:

(G_1) Für alle $\Sigma \in \mathcal{A}$ (Apartment) gibt es einen Isomorphismus $\phi : \Sigma(W,S) \to \Sigma \subseteq \Delta$ über S.

Definition:

Sei Δ Simplizialkomplex über S, \mathcal{A} Menge von Unterkomplexen (Apartmentsystem).

- (G_1) Für alle $\Sigma \in \mathcal{A}$ (Apartment) gibt es einen Isomorphismus $\phi : \Sigma(W, S) \to \Sigma \subseteq \Delta$ über S.
- (G_2) Sind Σ_1 , $\Sigma_2 \in \mathcal{A}$ und $a, b \in \Sigma_1 \cap \Sigma_2$, so gibt es einen Isomorphismus $\Sigma_1 \to \Sigma_2$ über S, der a und b fixiert.

Definition:

Sei Δ Simplizialkomplex über S, \mathcal{A} Menge von Unterkomplexen (Apartmentsystem).

- (G_1) Für alle $\Sigma \in \mathcal{A}$ (Apartment) gibt es einen Isomorphismus $\phi : \Sigma(W, S) \to \Sigma \subseteq \Delta$ über S.
- (G_2) Sind Σ_1 , $\Sigma_2 \in \mathcal{A}$ und $a, b \in \Sigma_1 \cap \Sigma_2$, so gibt es einen Isomorphismus $\Sigma_1 \to \Sigma_2$ über S, der a und b fixiert.
- (G_3) Sind $a, b \in \Delta$, so gibt es $\Sigma \in \mathcal{A}$ mit $a, b \in \Sigma$.

Definition:

Sei Δ Simplizialkomplex über S, \mathcal{A} Menge von Unterkomplexen (Apartmentsystem).

- (G_1) Für alle $\Sigma \in \mathcal{A}$ (Apartment) gibt es einen Isomorphismus $\phi : \Sigma(W, S) \to \Sigma \subseteq \Delta$ über S.
- (G_2) Sind Σ_1 , $\Sigma_2 \in \mathcal{A}$ und $a, b \in \Sigma_1 \cap \Sigma_2$, so gibt es einen Isomorphismus $\Sigma_1 \to \Sigma_2$ über S, der a und b fixiert.
- (G_3) Sind $a, b \in \Delta$, so gibt es $\Sigma \in \mathcal{A}$ mit $a, b \in \Sigma$.
- ▶ Ein Gebäude vom Typ (W, S) hat die Dimension #S 1.

Definition:

Sei Δ Simplizialkomplex über S, \mathcal{A} Menge von Unterkomplexen (Apartmentsystem).

- (G_1) Für alle $\Sigma \in \mathcal{A}$ (Apartment) gibt es einen Isomorphismus $\phi : \Sigma(W, S) \to \Sigma \subseteq \Delta$ über S.
- (G_2) Sind Σ_1 , $\Sigma_2 \in \mathcal{A}$ und $a, b \in \Sigma_1 \cap \Sigma_2$, so gibt es einen Isomorphismus $\Sigma_1 \to \Sigma_2$ über S, der a und b fixiert.
- (G_3) Sind $a, b \in \Delta$, so gibt es $\Sigma \in \mathcal{A}$ mit $a, b \in \Sigma$.
- ▶ Ein Gebäude vom Typ (W, S) hat die Dimension #S 1.
- ► Coxeterkomplex $\Sigma(W, S)$ mit Apartmentsystem $\mathcal{A} = \{\Sigma(W, S)\}$ ist ein Gebäude.

Dünne Gebäude und Gebäude vom Typ $I_2(m)$

- ▶ **Erinnerung**: Coxetersystem $(W, S) \leftrightarrow$ Coxetermatrix $M \leftrightarrow$ Coxetergraph Γ .
- ▶ "Dünne" Gebäude vom Typ $\Gamma \leftrightarrow \text{Coxeterkomplexe } \Sigma(W, S)$.

Dünne Gebäude und Gebäude vom Typ $I_2(m)$

- ▶ **Erinnerung**: Coxetersystem $(W, S) \leftrightarrow$ Coxetermatrix $M \leftrightarrow$ Coxetergraph Γ .
- ▶ "Dünne" Gebäude vom Typ $\Gamma \leftrightarrow$ Coxeterkomplexe $\Sigma(W,S)$.
- ▶ Gebäude vom Typ $\stackrel{m}{\smile}$ \leftrightarrow verallgemeinerte m-Ecke.
- ▶ "Dicke" Gebäude vom Typ $_{\circ}$ \xrightarrow{m} \leftrightarrow dicke verallgemeinerte m-Ecke.

- ▶ **Erinnerung**: Coxetergraph \tilde{A}_1 : $_{\infty}^{\infty}$ \leftrightarrow $(D_{\infty}, \{s, t\})$.
- ▶ Gebäude vom Typ $\tilde{A}_1 \leftrightarrow$ Bäume ohne Blätter.

- ▶ **Erinnerung**: Coxetergraph \tilde{A}_1 : $_{\infty}^{\infty}$ \leftrightarrow $(D_{\infty}, \{s, t\})$.
- ▶ Gebäude vom Typ $\tilde{A}_1 \leftrightarrow$ Bäume ohne Blätter.
- ▶ **Beweis "←":** Sei X ein Baum ohne Blätter. Setze: $A = \{$ in beide Richtungen unendlich lange Wege $\}$.

- ▶ **Erinnerung:** Coxetergraph \tilde{A}_1 : $_{\circ}$ $\stackrel{\infty}{\longrightarrow}_{\circ}$ \leftrightarrow $(D_{\infty}, \{s, t\})$.
- ▶ Gebäude vom Typ $\tilde{A}_1 \leftrightarrow$ Bäume ohne Blätter.
- ▶ **Beweis "←":** Sei X ein Baum ohne Blätter. Setze: $A = \{$ in beide Richtungen unendlich lange Wege $\}$. Dann gelten (G_1)
 - (G_1) Für alle $\Sigma \in \mathcal{A}$ gibt es einen Isomorphismus $\phi : \Sigma(W,S) \to \Sigma \subseteq \Delta$ über S.

- ▶ **Erinnerung:** Coxetergraph \tilde{A}_1 : $_{\circ}$ $\stackrel{\infty}{\longrightarrow}_{\circ}$ \leftrightarrow $(D_{\infty}, \{s, t\})$.
- ▶ Gebäude vom Typ $ilde{A}_1 \leftrightarrow$ Bäume ohne Blätter.
- ▶ **Beweis "←":** Sei X ein Baum ohne Blätter. Setze: $A = \{$ in beide Richtungen unendlich lange Wege $\}$. Dann gelten (G_1) , (G_2)
 - (G_2) Sind Σ_1 , $\Sigma_2 \in \mathcal{A}$ und $a, b \in \Sigma_1 \cap \Sigma_2$, so gibt es einen Isomorphismus $\Sigma_1 \to \Sigma_2$ über S, der a und b fixiert.

- ▶ **Erinnerung**: Coxetergraph \tilde{A}_1 : $_{\infty}^{\infty}$ \leftrightarrow $(D_{\infty}, \{s, t\})$.
- ▶ Gebäude vom Typ $\tilde{A}_1 \leftrightarrow \text{Bäume ohne Blätter}$.
- ▶ Beweis "←": Sei X ein Baum ohne Blätter. Setze: $A = \{$ in beide Richtungen unendlich lange Wege $\}$. Dann gelten (G_1) , (G_2) und (G_3) .
 - (G_3) Sind $a, b \in \Delta$, so gibt es $\Sigma \in \mathcal{A}$ mit $a, b \in \Sigma$.

- ▶ **Erinnerung**: Coxetergraph \tilde{A}_1 : ∞ \leftrightarrow $(D_{\infty}, \{s, t\})$.
- ▶ Gebäude vom Typ $\tilde{A}_1 \leftrightarrow \text{Bäume ohne Blätter}$.
- ▶ Beweis "←": Sei X ein Baum ohne Blätter. Setze: $A = \{$ in beide Richtungen unendlich lange Wege $\}$. Dann gelten (G_1) , (G_2) und (G_3) .

Folglich ist X ein Gebäude vom Typ \tilde{A}_1 .

▶ Beweis "→": Sei Δ ein Gebäude vom Typ \tilde{A}_1 .

Dann hat Δ Dimension $1 \Rightarrow \Delta$ ein kombinatorischer Graph.

Beweis "→": Sei Δ ein Gebäude vom Typ Ã₁.
 Dann hat Δ Dimension 1 ⇒ Δ ein kombinatorischer Graph.
 Wegen (G₃) ist der Graph zusammenhängend.
 (G₃) Sind a, b ∈ Δ, so gibt es Σ ∈ A mit a, b ∈ Σ.

▶ Beweis "→": Sei Δ ein Gebäude vom Typ Ä₁.
Dann hat Δ Dimension 1 ⇒ Δ ein kombinatorischer Graph.
Wegen (G₃) ist der Graph zusammenhängend.
Jede Ecke a hat mindestens zwei Nachbarn, da a im

Coxeterkomplex zwei Nachbarn hat.

▶ **Beweis** "→": Sei Δ ein Gebäude vom Typ \tilde{A}_1 .

Dann hat Δ Dimension $1 \Rightarrow \Delta$ ein kombinatorischer Graph.

Wegen (G_3) ist der Graph zusammenhängend.

Jede Ecke a hat mindestens zwei Nachbarn, da a im Coxeterkomplex zwei Nachbarn hat.

Gebäude ein Simplizialkomplex über $S = \{s_1, s_2\}$

 $\Rightarrow \Delta$ ein bipartiter Graph. Kreise haben gerade Länge.

▶ **Beweis** "→": Sei Δ ein Gebäude vom Typ \tilde{A}_1 .

Dann hat Δ Dimension $1 \Rightarrow \Delta$ ein kombinatorischer Graph.

Wegen (G_3) ist der Graph zusammenhängend.

Jede Ecke a hat mindestens zwei Nachbarn, da a im Coxeterkomplex zwei Nachbarn hat.

Gebäude ein Simplizialkomplex über $S = \{s_1, s_2\}$ $\Rightarrow \Delta$ ein bipartiter Graph. Kreise haben gerade Länge.

Angenommen: Es existieren Kreise in Δ . Wähle Kreis mit minimaler Länge.

Dann existieren für zwei gegenüberliegende Kanten c und c' zwei minimale Galerien.

Dies führt zu einem Widerspruch, da reduzierte Worte in D_{∞} eindeutig sind.

▶ **Beweis** "→": Sei Δ ein Gebäude vom Typ \tilde{A}_1 .

Dann hat Δ Dimension $1 \Rightarrow \Delta$ ein kombinatorischer Graph.

Wegen (G_3) ist der Graph zusammenhängend.

Jede Ecke *a* hat mindestens zwei Nachbarn, da *a* im Coxeterkomplex zwei Nachbarn hat.

Gebäude ein Simplizialkomplex über $S = \{s_1, s_2\}$

 $\Rightarrow \Delta$ ein bipartiter Graph. Kreise haben gerade Länge.

Angenommen: Es existieren Kreise in Δ . Wähle Kreis mit minimaler Länge.

Dann existieren für zwei gegenüberliegende Kanten c und c' zwei minimale Galerien.

Dies führt zu einem Widerspruch, da reduzierte Worte in D_{∞} eindeutig sind.

Insgesamt ist Δ ein Baum ohne Blätter. \square

To-Do-List

- ► Gebäude (als Simplizialkomplexe)
 - ightarrow Charakterisierung der Gebäude vom Typ $ilde{A}_1$ \checkmark
- ▶ Tits-Systeme
 - $o \mathit{SL}_2(\mathbb{Q})$ besitzt Tits-System "vom Typ \tilde{A}_1 "
 - ightarrow Assoziation eines Gebäudes zum Tits-System
- lacktriangle Tits-Systeme "vom Typ $ilde{A}_1$ " sind Amalgame
 - \rightarrow Assoziation eines Baumes zum Amalgam
 - → Vergleich: Gebäude vs. Baum

▶ Definition: Ein 4-Tupel (G, B, N, S) aus einer Gruppe G, Untergruppen B und N und einer Teilmenge S ⊆ N heißt <u>Tits-System</u> mit Weyl-Gruppe W, wenn die folgenden Bedingungen erfüllt sind:

W := N/T.

Definition: Ein 4-Tupel (G, B, N, S) aus einer Gruppe G, Untergruppen B und N und einer Teilmenge S ⊆ N heißt <u>Tits-System</u> mit Weyl-Gruppe W, wenn die folgenden Bedingungen erfüllt sind: (T₁) G = ⟨B ∪ N⟩, T := B ∩ N ist ein Normalteiler in N und

▶ **Definition**: Ein 4-Tupel (G, B, N, S) aus einer Gruppe G,
 Untergruppen B und N und einer Teilmenge $S \subseteq N$ heißt <u>Tits-System</u> mit Weyl-Gruppe W, wenn die folgenden Bedingungen erfüllt sind:
 $(T_1) G = \langle B \cup N \rangle$,

$$(T_1)$$
 $G = \langle B \cup N \rangle$,
 $T := B \cap N$ ist ein Normalteiler in N und
 $W := N/T$.

$$(T_2)$$
 $S' = \{sT | s \in S\}$ erzeugt W und für alle $sT \in S'$ gilt: $ord_W(sT) = 2$.

▶ **Definition**: Ein 4-Tupel (G, B, N, S) aus einer Gruppe G,
Untergruppen B und N und einer Teilmenge $S \subseteq N$ heißt Tits-System mit Weyl-Gruppe W, wenn die folgenden

Bedingungen erfüllt sind:

- (T_1) $G = \langle B \cup N \rangle$, $T := B \cap N$ ist ein Normalteiler in N und W := N/T.
- (T_2) $S' = \{sT | s \in S\}$ erzeugt W und für alle $sT \in S'$ gilt: $ord_W(sT) = 2$.
- (T_3) Für beliebige $s \in S$ und $w \in W$ gilt:

 $BsBwB \subseteq BwB \cup BswB$

- ▶ Definition: Ein 4-Tupel (G, B, N, S) aus einer Gruppe G, Untergruppen B und N und einer Teilmenge S ⊆ N heißt <u>Tits-System</u> mit Weyl-Gruppe W, wenn die folgenden Bedingungen erfüllt sind:
 - (T_1) $G = \langle B \cup N \rangle$, $T := B \cap N$ ist ein Normalteiler in N und W := N/T.
 - (T_2) $S' = \{sT | s \in S\}$ erzeugt W und für alle $sT \in S'$ gilt: $ord_W(sT) = 2$.
 - (T_3) Für beliebige $s \in S$ und $w \in W$ gilt:

$$BsBwB \subseteq BwB \cup BswB$$

(T_4) Für alle $s \in S$ gilt:

$$sBs^{-1} \not\subseteq B$$
.

Diskrete Bewertung am Beispiel $\mathbb Q$

Beispiel: Sei $K = \mathbb{Q}$ mit Bewertung

$$\nu_2:\mathbb{Q}\to\mathbb{Z}, q=2^k\cdot \frac{a}{b}\mapsto k$$
 mit $k\in\mathbb{Z},$ wobei 2 teilt nicht $a,b.$

mit dem zugehörigen Bewertungsring

$$\mathcal{O}_2 = \Big\{ \frac{a}{b} \, \Big| \, 2 \text{ teilt nicht } b \Big\}.$$

▶ Beispiel: Sei $K = \mathbb{Q}$ mit der Bewertung ν_2 und Bewertungsring \mathcal{O}_2 (wie zuvor). Weiter setzen wir:

$$G = SL_2(\mathbb{Q}),$$

$$B = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathcal{O}_2) | c \equiv 0 \pmod{2} \right\},\,$$

▶ **Beispiel**: Sei $K = \mathbb{Q}$ mit der Bewertung ν_2 und Bewertungsring \mathcal{O}_2 (wie zuvor). Weiter setzen wir:

$$G = SL_2(\mathbb{Q}),$$

$$B = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathcal{O}_2) | c \equiv 0 \pmod{2} \right\},\,$$

Definition: Für $\frac{a}{b} \in \mathbb{Q}$ gilt:

$$\frac{a}{b} \equiv 0 \pmod{2}$$
 : $\Leftrightarrow a \equiv 0 \pmod{2}$ und $ggT(b,2) = 1$.

▶ **Beispiel**: Sei $K = \mathbb{Q}$ mit der Bewertung ν_2 und Bewertungsring \mathcal{O}_2 (wie zuvor). Weiter setzen wir:

$$G = SL_2(\mathbb{Q})$$
,

$$B = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathcal{O}_2) | c \equiv 0 \text{ (mod 2)} \right\},$$

Definition: Für $\frac{a}{b} \in \mathbb{Q}$ gilt:

$$\frac{a}{b} \equiv 0 \pmod{2}$$
 : $\Leftrightarrow a \equiv 0 \pmod{2}$ und $ggT(b,2) = 1$.

$$\begin{split} N &= \left\{ \begin{pmatrix} q & 0 \\ 0 & q^{-1} \end{pmatrix}, \begin{pmatrix} 0 & q \\ -q^{-1} & 0 \end{pmatrix} \middle| q \in \mathbb{Q}^* \right\} \text{ und} \\ S &= \left\{ s_1, s_2 \right\} \text{ mit } s_1 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \text{ und } s_2 = \begin{pmatrix} 0 & -2^{-1} \\ 2 & 0 \end{pmatrix}. \end{split}$$

▶ B ist Untergruppe von G: 112 ∈ B, für Abgeschlossenheit unter Inversion und Multiplikation:

$$p,q\in\mathbb{Q}$$
 und $p\equiv 0\ (mod\ 2)$, dann gilt:
$$-p\equiv 0\ (mod\ 2) \text{ und}$$

$$p\cdot q\equiv 0\ (mod\ 2).$$

- ▶ *N* ist Untergruppe von *G*: Matrizenrechnung.
- ▶ $B \cap N$ ist ein Normalteiler in N: Matrizenrechnung und...

$$\begin{array}{l} \blacktriangleright \ \dots G = \langle B \cup N \rangle : \\ \text{Bekannt:} \ G = SL_2(\mathbb{Q}) = \left\langle \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ y & 1 \end{pmatrix} \middle| x, y \in \mathbb{Q} \right\rangle \\ \text{Es genügt also zu zeigen:} \ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ y & 1 \end{pmatrix} \in \langle B \cup N \rangle. \\ \end{array}$$

► ...
$$G = \langle B \cup N \rangle$$
:

Bekannt: $G = SL_2(\mathbb{Q}) = \left\langle \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ y & 1 \end{pmatrix} \middle| x, y \in \mathbb{Q} \right\rangle$

Es genügt also zu zeigen: $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ y & 1 \end{pmatrix} \in \langle B \cup N \rangle$.

Für $x, y \in \mathcal{O}_2$ gilt:

$$\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \in B \text{ und}$$

$$\begin{pmatrix} 1 & 0 \\ y & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & -y \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in \langle B \cup N \rangle.$$

Für $x, y \in \mathbb{Q} - \mathcal{O}_2$: $x = 2^{-2k} \cdot x', y = 2^{-2l} \cdot y' \text{ mit } k, l \in \mathbb{N} \text{ und } x', y' \in \mathcal{O}_2$

Für $x, y \in \mathbb{Q} - \mathcal{O}_2$: $x = 2^{-2k} \cdot x', y = 2^{-2l} \cdot y' \text{ mit } k, l \in \mathbb{N} \text{ und } x', y' \in \mathcal{O}_2$

$$\begin{pmatrix} 2^{-k} & 1 \\ 0 & 2^k \end{pmatrix}, \begin{pmatrix} 2^{-l} & 0 \\ -1 & 2^l \end{pmatrix} \in \langle B \cup N \rangle.$$

Für $x, y \in \mathbb{Q} - \mathcal{O}_2$: $x = 2^{-2k} \cdot x', y = 2^{-2l} \cdot y' \text{ mit } k, l \in \mathbb{N} \text{ und } x', y' \in \mathcal{O}_2$

$$\begin{pmatrix} 2^{-k} & 1 \\ 0 & 2^k \end{pmatrix}, \begin{pmatrix} 2^{-l} & 0 \\ -1 & 2^l \end{pmatrix} \in \langle B \cup N \rangle.$$

Durch Konjugation von:

$$\begin{pmatrix} 1 & x' \\ 0 & 1 \end{pmatrix} \text{ mit } \begin{pmatrix} 2^{-k} & 1 \\ 0 & 2^k \end{pmatrix} \text{ und }$$

$$\begin{pmatrix} 1 & 0 \\ y' & 1 \end{pmatrix} \text{ mit } \begin{pmatrix} 2^{-l} & 0 \\ -1 & 2^l \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ y & 1 \end{pmatrix} \in \langle B \cup N \rangle.$$

➤ Details zur Rechnung

▶ (T_2) Für alle $s \in S$ gilt $s^2 = -1_2 \in T$, also ord(sT) = 2 und:

$$W = N/T = \langle s_1 T, s_2 T \rangle$$

▶ (T_2) Für alle $s \in S$ gilt $s^2 = -1_2 \in T$, also ord(sT) = 2 und:

$$W = N/T = \langle s_1 T, s_2 T \rangle$$

"⊇": klar,

▶ (T_2) Für alle $s \in S$ gilt $s^2 = -1_2 \in T$, also ord(sT) = 2 und:

$$W = N/T = \langle s_1 T, s_2 T \rangle$$

"⊇": klar,

" \subseteq ": Sei $w \in W$ beliebig.

Dann gilt für $q, \tilde{q} \in \mathbb{Q}$ mit $\nu_2(\tilde{q}) = 0$ und $I \in \mathbb{Z}$:

$$w = \begin{pmatrix} q & 0 \\ 0 & q^{-1} \end{pmatrix} T = \underbrace{\begin{pmatrix} 2^{l} & 0 \\ 0 & 2^{-l} \end{pmatrix}}_{\in \langle s_{1}T, s_{2}T \rangle} \underbrace{\begin{pmatrix} \tilde{q} & 0 \\ 0 & \tilde{q}^{-1} \end{pmatrix}}_{\in T} T$$

▶ (T_2) Für alle $s \in S$ gilt $s^2 = -1_2 \in T$, also ord(sT) = 2 und:

$$W = N/T = \langle s_1 T, s_2 T \rangle$$

"⊇": klar,

" \subseteq ": Sei $w \in W$ beliebig.

Dann gilt für $q, \tilde{q} \in \mathbb{Q}$ mit $\nu_2(\tilde{q}) = 0$ und $I \in \mathbb{Z}$:

$$w = \begin{pmatrix} q & 0 \\ 0 & q^{-1} \end{pmatrix} T = \underbrace{\begin{pmatrix} 2^{l} & 0 \\ 0 & 2^{-l} \end{pmatrix}}_{\in \langle s_{1}T, s_{2}T \rangle} \underbrace{\begin{pmatrix} \tilde{q} & 0 \\ 0 & \tilde{q}^{-1} \end{pmatrix}}_{\in T} T$$

oder:

$$w = \begin{pmatrix} 0 & q \\ -q^{-1} & 0 \end{pmatrix} T = \underbrace{\begin{pmatrix} q & 0 \\ 0 & q^{-1} \end{pmatrix}}_{\in \langle s_1 T, s_2 T \rangle} \underbrace{\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}}_{\in s_1 T} T.$$

▶ (T_3) Es gilt: $BsBwB \subseteq BwB \cup BswB$ für alle $s \in S, w \in W$.

Da W von Involutionen erzeugt wird, gilt:

$$w = (st)^I$$
 oder $w = (st)^I s$
mit $I \in \mathbb{N}$ und $s \neq t, s, t \in \{s_1, s_2\}$.

▶ (T_3) Es gilt: $BsBwB \subseteq BwB \cup BswB$ für alle $s \in S, w \in W$.

Da W von Involutionen erzeugt wird, gilt:

$$w = (st)^I$$
 oder $w = (st)^I s$
mit $I \in \mathbb{N}$ und $s \neq t, s, t \in \{s_1, s_2\}$.

Behauptung:

Im Fall
$$I_W(sw) = I_W(w) + 1$$
 gilt: $BsBwB = BswB$.
Im Fall $I_W(sw) = I_W(w) - 1$ gilt: $BsBwB = BwB$.

- **Exemplarisch betrachten wir**: $s = s_2$ und $w = (s_1 s_2)^I$
- Wir bemerken:

$$ilde{b} = egin{pmatrix} a & b \ c & d \end{pmatrix} \in B \Rightarrow
u_2(a) =
u_2(d) = 0,
u_2(b) \geq 0 \; ext{und} \;
u_2(c) \geq 1.$$

- **Exemplarisch betrachten wir**: $s = s_2$ und $w = (s_1 s_2)^I$
- Wir bemerken:

$$ilde{b} = egin{pmatrix} a & b \ c & d \end{pmatrix} \in B \Rightarrow
u_2(a) =
u_2(d) = 0,
u_2(b) \geq 0 \; ext{und} \;
u_2(c) \geq 1.$$

Für $s\tilde{b}w \in sBw$ folgt:

$$\begin{split} s\tilde{b}w &= (\pm 1)^{l} \begin{pmatrix} -2^{l-1}c & -2^{-l+1}d \\ 2^{l+1}a & 2^{-l+1}b \end{pmatrix} \\ \Rightarrow \nu_{2}(-2^{l-1}c) \geq l, \nu_{2}(-2^{-l+1}d) = l+1, \\ \nu_{2}(2^{-l+1}a) &= -l+1 \text{ und } \nu_{2}(-2^{-l+1}b) \geq -l+1. \end{split}$$

▶ Damit können wir zeigen: ▶ Details zur Rechnung

$$\underbrace{\begin{pmatrix} 1 & 0 \\ 2^2d^{-1}b & 1 \end{pmatrix} s\tilde{b}w \begin{pmatrix} 1 & 0 \\ -2^{2l-2}d^{-1}c & 1 \end{pmatrix} T}_{\subseteq Bs\tilde{b}wB} = \underbrace{\begin{pmatrix} 0 & -2^{-l-1} \\ 2^{l+1} & 0 \end{pmatrix} T}_{\subseteq BswB}$$

$$\underbrace{\begin{pmatrix} 1 & 0 \\ 2^2d^{-1}b & 1 \end{pmatrix} s\tilde{b}w \begin{pmatrix} 1 & 0 \\ -2^{2l-2}d^{-1}c & 1 \end{pmatrix} T}_{\subseteq Bs\tilde{b}wB} = \underbrace{\begin{pmatrix} 0 & -2^{-l-1} \\ 2^{l+1} & 0 \end{pmatrix} T}_{\subseteq BswB}$$

$$Bs\tilde{b}wB \cap BswB \neq \emptyset$$

Damit können wir zeigen: Details zur Rechnung

$$\underbrace{\begin{pmatrix} 1 & 0 \\ 2^{2}d^{-1}b & 1 \end{pmatrix} s\tilde{b}w \begin{pmatrix} 1 & 0 \\ -2^{2l-2}d^{-1}c & 1 \end{pmatrix} T}_{\subseteq Bs\tilde{b}wB} = \underbrace{\begin{pmatrix} 0 & -2^{-l-1} \\ 2^{l+1} & 0 \end{pmatrix} T}_{\subseteq BswB}$$

$$Bs\tilde{b}wB\cap BswB\neq\emptyset$$

$$\Rightarrow Bs\tilde{b}wB = BswB$$

▶ Damit können wir zeigen: ▶ Details zur Rechnung

$$\underbrace{\begin{pmatrix} 1 & 0 \\ 2^2d^{-1}b & 1 \end{pmatrix} s\tilde{b}w \begin{pmatrix} 1 & 0 \\ -2^{2l-2}d^{-1}c & 1 \end{pmatrix} T}_{\subseteq Bs\tilde{b}wB} = \underbrace{\begin{pmatrix} 0 & -2^{-l-1} \\ 2^{l+1} & 0 \end{pmatrix} T}_{\subseteq BswB}$$

$$Bs\tilde{b}wB \cap BswB \neq \emptyset$$

$$\Rightarrow Bs\tilde{b}wB = BswB$$

- ▶ Da $\tilde{b} \in B$ beliebig war, folgt: BsBwB = BswB
- ▶ Ähnlich können die anderen Fälle nachgerechnet werden.

▶ (T_4) Zu zeigen: $sBs^{-1} \not\subseteq B$ für alle $s \in S$:

$$\underbrace{\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}}_{=s_1} \cdot \underbrace{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}}_{\in B} \cdot \underbrace{\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}}_{=s_1^{-1}} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \not\in B \text{ und}$$

$$\underbrace{\begin{pmatrix} 0 & -2^{-1} \\ 2 & 0 \end{pmatrix}}_{=s_2} \cdot \underbrace{\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}}_{\in B} \cdot \underbrace{\begin{pmatrix} 0 & 2^{-1} \\ -2 & 0 \end{pmatrix}}_{=s_2^{-1}} = \begin{pmatrix} 1 & -2^{-1} \\ -8 & 1 \end{pmatrix} \not\in B.$$

Also gilt für alle $s \in S$: $sBs^{-1} \not\subseteq B$.

▶ Insgesamt folgt: (G, B, N, S) ist ein Tits-System.

▶ Insgesamt folgt: (G, B, N, S) ist ein Tits-System.

▶ Wegen
$$s_1 s_2 = \begin{pmatrix} -2 & 0 \\ 0 & -2^{-1} \end{pmatrix}$$
 folgt: $ord_W(s_1 T s_2 T) = \infty$

$$\Rightarrow W = \langle s_1 T, s_2 T | (s_1 T)^2, (s_2 T)^2 \rangle \cong D_{\infty}$$

$$\Rightarrow (W, S') \leftrightarrow (D_{\infty}, S') \leftrightarrow \tilde{A}_1.$$

- ▶ Insgesamt folgt: (G, B, N, S) ist ein Tits-System.
- ▶ Wegen $s_1 s_2 = \begin{pmatrix} -2 & 0 \\ 0 & -2^{-1} \end{pmatrix}$ folgt: $ord_W(s_1 T s_2 T) = \infty$ $\Rightarrow W = \langle s_1 T, s_2 T | (s_1 T)^2, (s_2 T)^2 \rangle \cong D_{\infty}$ $\Rightarrow (W, S') \leftrightarrow (D_{\infty}, S') \leftrightarrow \tilde{A}_1.$
- ▶ Genauer gilt also: (G, B, N, S) ist ein Tits-System mit Weyl-Gruppe vom Typ \tilde{A}_1 .
 - Kurz: (G, B, N, S) ist Tits-System vom Typ \tilde{A}_1 .

- ▶ Insgesamt folgt: (G, B, N, S) ist ein Tits-System.
- ▶ Wegen $s_1 s_2 = \begin{pmatrix} -2 & 0 \\ 0 & -2^{-1} \end{pmatrix}$ folgt: $ord_W(s_1 T s_2 T) = \infty$ $\Rightarrow W = \langle s_1 T, s_2 T | (s_1 T)^2, (s_2 T)^2 \rangle \cong D_{\infty}$ $\Rightarrow (W, S') \leftrightarrow (D_{\infty}, S') \leftrightarrow \tilde{A}_1.$
- Genauer gilt also: (G, B, N, S) ist ein Tits-System mit Weyl-Gruppe vom Typ Ã₁.
 Kurz: (G, B, N, S) ist Tits-System vom Typ Ã₁.
- ▶ Allgemeiner: Wähle beliebigen Körper K mit diskreter Bewertung ν , zum Beispiel \mathbb{Q}_2 .

To-Do-List

- ► Gebäude (als Simplizialkomplexe)
 - ightarrow Charakterisierung der Gebäude vom Typ $ilde{A}_1$ \checkmark
- ▶ Tits-Systeme
 - $o \mathit{SL}_2(\mathbb{Q})$ besitzt Tits-System "vom Typ $ilde{A}_1$ " \checkmark
 - ightarrow Assoziation eines Gebäudes zum Tits-System
- ▶ Tits-Systeme "vom Typ \tilde{A}_1 " sind Amalgame
 - \rightarrow Assoziation eines Baumes zum Amalgam
 - \rightarrow Vergleich: Gebäude vs. Baum

Eigenschaften von Tits-Systemen

- **Konvention:** Sei (G, B, N, S) im Weiteren stets ein Tits-System mit Weyl-Gruppe W = N/T. Dann gelten die folgenden Eigenschaften:
- ▶ **Satz:** $G = \bigsqcup_{w \in W} BwB$ ("Bruhat-Zerlegung").

Eigenschaften von Tits-Systemen

- **Konvention:** Sei (G, B, N, S) im Weiteren stets ein Tits-System mit Weyl-Gruppe W = N/T. Dann gelten die folgenden Eigenschaften:
- ▶ Satz: $G = \bigsqcup_{w \in W} BwB$ ("Bruhat-Zerlegung").
- ▶ **Beweisidee**: Zeige: $\bigcup_{w \in W} BwB \subseteq G$ Untergruppe, die B und N enthält. Damit folgt: $G = \bigcup_{w \in W} BwB$.

Eigenschaften von Tits-Systemen

- **Konvention:** Sei (G, B, N, S) im Weiteren stets ein Tits-System mit Weyl-Gruppe W = N/T. Dann gelten die folgenden Eigenschaften:
- ▶ Satz: $G = \bigsqcup_{w \in W} BwB$ ("Bruhat-Zerlegung").
- ▶ Beweisidee: Zeige: $\bigcup_{w \in W} BwB \subseteq G$ Untergruppe, die B und N enthält. Damit folgt: $G = \bigcup_{w \in W} BwB$.

 Weiter ist $W \to \bigcup_{w \in W} BwB$, $u \mapsto BuB$ ist injektiv.

 (z.B. Gebäude-Vorlesung, Varghese, Kap. 4, Lemma (A))

 Also: $G = \bigcup_{w \in W} BwB$.

Untergruppen in Tits-Systemen

▶ **Definition:** Sei $R \subseteq S$ eine Teilmenge. Dann ist:

$$W_R := \langle R \rangle \subseteq W.$$

 $P_R := BW_R B = \bigsqcup_{w \in W_R} BwB. \subseteq G$

 P_R heißt Standard-parabolische Untergruppe vom Typ R.

Assoziation eines Gebäudes zu einem Tits-System

► Theorem:

Sei (G, B, N, S) ein Tits-System mit Weyl-Gruppe (W, S'). Dann existiert ein "dickes" Gebäude $\Delta(G, B, N, S)$ vom Typ (W, S') auf dem G "stark transitiv" wirkt.

Beweisidee: Assoziation eines Gebäudes zu einem Tits-System

Setze:

$$\Delta := \Delta(G, B, N, S) = \bigsqcup_{T \subseteq S'} G/P_T$$

$$\text{mit } gP_T \le g'P_{T'} \overset{\text{Def.}}{\Leftrightarrow} gP_T \supseteq g'P_{T'}$$

Mit $t(gP_T) := S' - T$ ist Δ ein Simplizialkomplex über S'.

Beweisidee: Assoziation eines Gebäudes zu einem Tits-System

Setze:

$$\Delta := \Delta(G, B, N, S) = \bigsqcup_{T \subseteq S'} G/P_T$$
mit $gP_T \le g'P_{T'} \stackrel{\text{Def.}}{\Leftrightarrow} gP_T \supseteq g'P_{T'}$

Mit $t(gP_T) := S' - T$ ist Δ ein Simplizialkomplex über S'.

Die Abbildung

$$\varphi: \Sigma(W, S') \to \Delta, wW_T \mapsto wP_T$$

ist wohldefiniert, injektiv(!) und simplizial.

Beweisidee: Assoziation eines Gebäudes zu einem Tits-System

Setze:

$$\Delta := \Delta(G, B, N, S) = \bigsqcup_{T \subseteq S'} G/P_T$$
mit $gP_T \le g'P_{T'} \stackrel{\text{Def.}}{\Leftrightarrow} gP_T \supseteq g'P_{T'}$

Mit $t(gP_T) := S' - T$ ist Δ ein Simplizialkomplex über S'.

Die Abbildung

$$\varphi: \Sigma(W, S') \to \Delta, wW_T \mapsto wP_T$$

ist wohldefiniert, injektiv(!) und simplizial.

$$\Sigma_0 := \varphi(\Sigma(W, S')) \subseteq \Delta \Rightarrow \Sigma_0 \cong \Sigma(W, S').$$

G-Wirkung auf Δ : durch Linksmultiplikation.

Assoziation eines Gebäudes zum Tits-System

- ▶ Man kann zeigen: Δ ist Gebäude vom Typ (W, S') mit Apartmentsystem $\mathcal{A} := \{g(\Sigma_0) | g \in G\}$.
- ▶ Später: genauere Betrachtung im Beispiel $G = SL_2(\mathbb{Q})$.
- ▶ Unterschied: $SL_2(\mathbb{Q})$ Apartmentsystem abzählbar, $SL_2(\mathbb{Q}_2)$ Apartmentsystem überabzählbar.

Untergruppen in Tits-Systemen

▶ **Lemma**: Die Abbildung $\mathcal{P}(S) \to \{H \subseteq G | H \subseteq G \text{ Untergruppe und } B \subseteq H\}, \\ R \mapsto P_R \\ \text{ist eine Bijektion}.$

Untergruppen in Tits-Systemen

▶ **Lemma:** Die Abbildung $\mathcal{P}(S) \to \{H \subseteq G | H \subseteq G \text{ Untergruppe und } B \subseteq H\},$ $R \mapsto P_R$ ist eine Bijektion.

Beweisidee:

Injektivität: folgt mit disjunkter Bruhat-Zerlegung. Surjektivität: H Untergruppe mit $B \subseteq H$, dann gilt:

$$R := S \cap H \mapsto P_R = H.$$

(z.B. Gebäude-Vorlesung, Kramer, Kap. 4, Satz 15)

To-Do-List

- ► Gebäude (als Simplizialkomplexe)
 - ightarrow Charakterisierung der Gebäude vom Typ $ilde{A}_1$ \checkmark
- ▶ Tits-Systeme
 - $o \mathit{SL}_2(\mathbb{Q})$ besitzt Tits-System "vom Typ $ilde{A}_1$ " \checkmark
 - ightarrow Assoziation eines Gebäudes zum Tits-System \checkmark
- ▶ Tits-Systeme "vom Typ \tilde{A}_1 " sind Amalgame
 - \rightarrow Assoziation eines Baumes zum Amalgam
 - → Vergleich: Gebäude vs. Baum

Gruppen mit Tits-System und Amalgame

Algebra Geometrie Gruppe mit Tits-System vom Typ \tilde{A}_1 Wirkung Gebäude vom Typ \tilde{A}_1 Bäume ohne Blätter Baum

To-Do-List

- Gebäude (als Simplizialkomplexe)
 - ightarrow Charakterisierung der Gebäude vom Typ $ilde{A}_1$ \checkmark
- Tits-Systeme
 - $ightarrow \mathit{SL}_2(\mathbb{Q})$ besitzt Tits-System "vom Typ $ilde{A}_1$ " \checkmark
 - ightarrow Assoziation eines Gebäudes zum Tits-System \checkmark
- lacktriangle Tits-Systeme "vom Typ $ilde{A}_1$ " sind Amalgame
 - → algebraischer Beweis!!!
 - → Assoziation eines Baumes zum Amalgam
 - ightarrow Vergleich: Gebäude vs. Baum

Tits-Systeme vom Typ $\tilde{A_1}$

- ▶ Sei (G, B, N, S) ein Tits-System vom Typ \tilde{A}_1 .
- **Notation**: In dieser Situation ist $S = \{s_1, s_2\}$ und wir schreiben:

$$P_1 := P_{\{s_1\}} = B \cup Bs_1B$$
 und $P_2 := P_{\{s_2\}} = B \cup Bs_2B$.

Strukturtheorem zum Tits-System vom Typ $ilde{A}_1$

▶ **Theorem**: Sei (G, B, N, S) ein Tits-System vom Typ \tilde{A}_1 . Dann ist G ein Amalgam der Form:

$$G\cong P_1*_BP_2$$
,

wobei P_1, P_2 die Standard-parabolischen Untergruppen in G.

Strukturtheorem zum Tits-System vom Typ \tilde{A}_1

▶ **Theorem**: Sei (G, B, N, S) ein Tits-System vom Typ \tilde{A}_1 . Dann ist G ein Amalgam der Form:

$$G \cong P_1 *_B P_2$$
,

wobei P_1, P_2 die Standard-parabolischen Untergruppen in G.

Beweisstrategie:

Definieren durch Inklusionen $P_1 \hookrightarrow G, P_2 \hookrightarrow G$ induzierten Homomorphismus

$$\varphi: P_1 *_B P_2 \to G$$
.

Surjektivität: Zeigen: $\langle P_1, P_2 \rangle = G$.

Injektivität: Zeigen: $\ker(\varphi)$ trivial. Normalform Beweis

Das Amalgam am Beispiel $SL_2(\mathbb{Q})$

► Erinnerung:

$$\begin{split} &G = \mathit{SL}_2(\mathbb{Q}), \\ &B = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathit{SL}_2(\mathcal{O}_2) | c \equiv 0 \ (\textit{mod} \ 2) \right\} \ \mathsf{und} \\ &S = \left\{ s_1, s_2 \right\} \ \mathsf{mit} \ s_1 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \ \mathsf{und} \ s_2 = \begin{pmatrix} 0 & -2^{-1} \\ 2 & 0 \end{pmatrix}. \end{split}$$

Das Amalgam am Beispiel $SL_2(\mathbb{Q})$

► Erinnerung:

$$G = SL_2(\mathbb{Q}),$$

$$B = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathcal{O}_2) | c \equiv 0 \pmod{2} \right\} \text{ und}$$

$$S = \{s_1, s_2\} \text{ mit } s_1 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \text{ und } s_2 = \begin{pmatrix} 0 & -2^{-1} \\ 2 & 0 \end{pmatrix}.$$

▶ Dann gilt: $P_1 = B \cup Bs_1B = SL_2(\mathcal{O}_2)$, $P_2 = B \cup Bs_2B$ $= \left\{ \begin{pmatrix} a & 2^{-1}b \\ 2c & d \end{pmatrix} \middle| \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathcal{O}_2) \right\}.$

▶ Details Rechnung

Damit folgt:

$$SL_{2}(\mathbb{Q}) = G \stackrel{\mathsf{Thm.}}{\cong} P_{1} *_{B} P_{2}$$

$$= SL_{2}(\mathcal{O}_{2}) *_{B} \left\{ \begin{pmatrix} a & 2^{-1}b \\ 2c & d \end{pmatrix} \middle| \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_{2}(\mathcal{O}_{2}) \right\}.$$

To-Do-List

- ► Gebäude (als Simplizialkomplexe)
 - ightarrow Charakterisierung der Gebäude vom Typ $ilde{A}_1$ \checkmark
- ▶ Tits-Systeme
 - $o \mathit{SL}_2(\mathbb{Q})$ besitzt Tits-System "vom Typ $ilde{A}_1$ " \checkmark
 - ightarrow Assoziation eines Gebäudes zum Tits-System \checkmark
- ▶ Tits-Systeme "vom Typ \tilde{A}_1 " sind Amalgame \checkmark
 - \rightarrow Assoziation eines Baumes zum Amalgam
 - \rightarrow Vergleich: Gebäude vs. Baum

► **Erinnerung:** Sei *G* eine Gruppe, die ohne Inversion auf einem <u>orientierten</u> Graphen *X* wirkt.

► **Erinnerung:** Sei *G* eine Gruppe, die ohne Inversion auf einem <u>orientierten</u> Graphen *X* wirkt.

Quotientengraph $G \setminus X$:

Graph der Äquivalenzklassen der Bahnen der Ecken und Kanten des Graphen X unter der Wirkung von G.

► **Erinnerung:** Sei *G* eine Gruppe, die ohne Inversion auf einem <u>orientierten</u> Graphen *X* wirkt.

Quotientengraph $G \setminus X$:

Graph der Äquivalenzklassen der Bahnen der Ecken und Kanten des Graphen X unter der Wirkung von G.

G wirkt ohne Inversion

 \Rightarrow Quotientengraph erhält Orientierung des Graphen X.

Teilgraph $T \subseteq X$ Fundamentalbereich

 $:\Leftrightarrow T$ isomorph zum Quotientengraphen $G \setminus X$ ist.

► **Erinnerung:** Sei *G* eine Gruppe, die ohne Inversion auf einem <u>orientierten</u> Graphen *X* wirkt.

Quotientengraph $G \setminus X$:

Graph der Äquivalenzklassen der Bahnen der Ecken und Kanten des Graphen X unter der Wirkung von G.

G wirkt ohne Inversion

 \Rightarrow Quotientengraph erhält Orientierung des Graphen X.

Teilgraph $T \subseteq X$ Fundamentalbereich

- $:\Leftrightarrow T$ isomorph zum Quotientengraphen $G \setminus X$ ist.
- ▶ **Theorem**: Die Gruppe G ist ein Amalgam $G_1 *_A G_2$
 - \Leftrightarrow G wirkt ohne Inversion mit einem Segment T als Fundamentalbereich auf einem Baum X.

Ein einfaches Beispiel

- ▶ Sei $G = \mathbb{Z}/2\mathbb{Z} *_{\{1\}} \mathbb{Z}/2\mathbb{Z} = G_1 *_{\{1\}} G_2$ mit $G_1 = \langle s \rangle, G_2 = \langle t \rangle$.
- ▶ *G* wirkt ohne Inversion auf dem Baum:

- ▶ Der Quotientengraph der Wirkung ist: $_{\bigcirc}$ $_{\bigcirc}$ $_{\bigcirc}$ $_{\bigcirc}$ $_{\bigcirc}$
- ▶ Jedes Segment in *X* ist also ein Fundamentalbereich.

▶ Zum Amalgam $G = G_1 *_B G_2$ konstruiere Graphen mittels:

Ecken: $vert(X) = G/G_1 \cup G/G_2$, Kanten: $edge(X) = G/B \cup G/B$,

wobei $\overline{G/B}$ formale Kopie von G/B (orientierte Kanten).

▶ Zum Amalgam $G = G_1 *_B G_2$ konstruiere Graphen mittels:

Ecken: $vert(X) = G/G_1 \stackrel{.}{\cup} G/G_2$, Kanten: $edge(X) = G/B \stackrel{.}{\cup} \overline{G/B}$, wobei $\overline{G/B}$ formale Kopie von G/B (orientierte Kanten).

Anfangs- und Endpunktabbildung:

$$(*_0 \times *_1): G/B \rightarrow G/G_1 \times G/G_2, gB \mapsto (gG_1, gG_2).$$

▶ Zum Amalgam $G = G_1 *_B G_2$ konstruiere Graphen mittels:

Ecken: $vert(X) = G/G_1 \stackrel{.}{\cup} G/G_2$, Kanten: $edge(X) = G/B \stackrel{.}{\cup} \overline{G/B}$, wobei $\overline{G/B}$ formale Kopie von G/B (orientierte Kanten).

Anfangs- und Endpunktabbildung:

$$(*_0 \times *_1) : G/B \rightarrow G/G_1 \times G/G_2, gB \mapsto (gG_1, gG_2).$$

► *G*—Wirkung auf dem Graphen *X*: durch Linksmultiplikation. Bahnen bezüglich dieser Wirkung:

$$[G_1], [G_2], [B] \text{ und } [\overline{B}].$$

Folglich ist der Fundamentalbereich ein Segment.

Man kann zeigen: Der konstruierte Graph ist ein Baum.

Beweisidee: G wirkt auf Graph X mit Fundamentalbereich in Form eines Segments:

X ein Baum $\Leftrightarrow G_1 *_B G_2 \to G$ von Inklusionen induzierter Homomorphismus ein <u>Iso</u>morphismus.

To-Do-List

- ► Gebäude (als Simplizialkomplexe)
 - ightarrow Charakterisierung der Gebäude vom Typ $ilde{A}_1$ \checkmark
- ▶ Tits-Systeme
 - $o \mathit{SL}_2(\mathbb{Q})$ besitzt Tits-System "vom Typ $ilde{A}_1$ " \checkmark
 - ightarrow Assoziation eines Gebäudes zum Tits-System \checkmark
- ▶ Tits-Systeme "vom Typ $ilde{A}_1$ " sind Amalgame \checkmark
 - ightarrow Assoziation eines Baumes zum Amalgam \checkmark
 - \rightarrow Vergleich: Gebäude vs. Baum

Vergleich: Baum zum Amalgam und Gebäude zum Tits-System vom Typ \tilde{A}_1

- ▶ Baum zum Amalgam $G = P_1 *_B P_2$: Ecken: $vert(X) = G/P_1 \dot{\cup} G/P_2$, Kanten: $edge(X) = G/B \dot{\cup} \overline{G/B}$.
- ▶ $gB \leftrightarrow (gP_1, gP_2), \overline{gB} \leftrightarrow (gP_2, gP_1).$
- ► G-Wirkung auf Baum X: durch Linksmultiplikation.

Vergleich: Baum zum Amalgam und Gebäude zum Tits-System vom Typ \tilde{A}_1

- ▶ Baum zum Amalgam $G = P_1 *_B P_2$: Ecken: $vert(X) = G/P_1 \stackrel{.}{\cup} G/P_2$, Kanten: $edge(X) = G/B \stackrel{.}{\cup} \overline{G/B}$.
- ▶ $gB \leftrightarrow (gP_1, gP_2), \overline{gB} \leftrightarrow (gP_2, gP_1).$
- ► G-Wirkung auf Baum X: durch Linksmultiplikation.
- Gebäude zum Tits-System vom Typ \tilde{A}_1 :

$$\begin{split} \Delta &= \bigsqcup_{T \subseteq S} G/P_T \\ &= \underbrace{G/P_1 \stackrel{.}{\cup} G/P_2}_{\text{Ecken geom. Realisierung}} \stackrel{.}{\cup} \underbrace{G/B}_{\text{Kanten der geom. Realisierung}} \end{split}$$

mit partieller Ordnung: $gG_T \leq g'G_{T'} \stackrel{\text{Def.}}{\Leftrightarrow} gG_T \supseteq g'G_{T'}$.

Vergleich Baum zum Amalgam und Gebäude zum Tits-System vom Typ $\tilde{\mathcal{A}}_1$

Damit gilt:

$$g''B \leftrightarrow (gP_1, g'P_2)$$

$$\Leftrightarrow (*_0 \times *_1)(g''B) \stackrel{\mathrm{Def.}}{=} (g''P_1, g''P_2) = (gP_1, g'P_2)$$

$$\Leftrightarrow g^{-1}g'' \in P_1 \text{ und } g'^{-1}g'' \in P_2$$

$$\Leftrightarrow g^{-1}g''B \subseteq P_1 \text{ und } g'^{-1}g''B \subseteq P_2$$

$$\Leftrightarrow g''B \subseteq gP_1 \text{ und } g''B \subseteq g'P_2$$

$$\Leftrightarrow gP_1 \leq g''B \geq g'P_2.$$

Folglich stimmen die geometrischen Realisierungen des Baumes und des Gebäudes überein.

Der Baum / das Gebäude im Beispiel $G = SL_2(\mathbb{Q})$

▶ **Ausblick**: Der von uns konstruierte Baum stimmt im Beispiel $G = SL_2(\mathbb{Q})$ mit dem von Daniel konstruierten Baum überein.

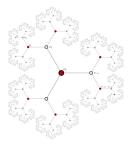
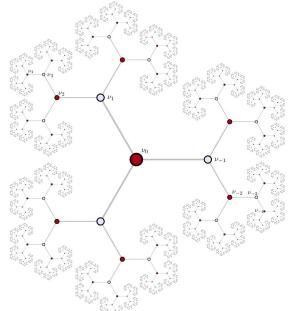


Figure: Der Bruhat-Tits-Baum, https://www.math.ubc.ca/ cass/research/pdf/Tree.pdf

- ▶ Dafür genügt es zu zeigen: Jede Ecke hat Valenz drei.
- ▶ Dieser Baum heißt der Bruhat-Tits-Baum.

Der Bruhat-Tits-Baum



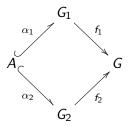
Zusammenfassung

- Gebäude sind Simplizialkomplexe mit vielen "schönen" Unterkomplexen. Gebäude vom Typ \tilde{A}_1 sind genau die Bäume ohne Blätter.
- ▶ Die Gruppe $SL_2(\mathbb{Q})$ besitzt ein Tits-System vom Typ \tilde{A}_1 .
- ▶ Zu jeder Gruppe G mit Tits-System finden wir ein Gebäude, auf dem die Gruppe G "schön" wirkt. Insbesondere erhalten wir zur Gruppe $SL_2(\mathbb{Q})$ einen Baum ohne Blätter.
- ▶ Die Gruppe $SL_2(\mathbb{Q})$ ist ein Amalgam. Zu diesem Amalgam erhalten wir einen Baum. In diesem Baum hat jede Ecke Valenz 3.
 - → Bruhat-Tits-Baum.

Amalgame

Definition: Seien G₁, G₂ und A Gruppen mit
 Monomorphismen α_i : A → G_i.

 Eine Gruppe G heißt Amalgam der Gruppen G_i über A, wenn das folgende Diagramm kommutiert:



- ▶ Mit den obigen Bezeichnungen ist das Amalgam *G* bis auf Isomorphie eindeutig.
- ▶ Notation: $G = G_1 *_A G_2$.

Die Normalform von Amalgamen

- ▶ Identifiziere $A \cong \alpha_i(A) \subseteq G_i$ als Untergruppe.
- Konstruktion: Betrachte Rechtsnebenklassen A\G_i.
 Wähle Repräsentantensystem S_i, in dem die Nebenklasse A durch 1 repräsentiert wird.

Die Normalform von Amalgamen

- ▶ Identifiziere $A \cong \alpha_i(A) \subseteq G_i$ als Untergruppe.
- **Konstruktion**: Betrachte Rechtsnebenklassen $A \setminus G_i$.

Wähle Repräsentantensystem S_i , in dem die Nebenklasse A durch 1 repräsentiert wird.

Dann ist die folgende Abbildung λ eine Bijektion:

$$\lambda: A \times (S_i - \{1\}) \rightarrow G_i - A, (a, s) \mapsto a \cdot s.$$

reduziertes Wort w im Amalgam $G_1 *_A G_2 \hat{=}$

$$w = (a, s_1, ..., s_n) \text{ mit } a \in A, s_k \in S_{i_k} - \{1\}$$

 $\text{für } (i_1, ..., i_n) \in \{1, 2\}^n \text{ mit } i_k \neq i_{k+1}.$

Die Normalform von Amalgamen

- ▶ Identifiziere $A \cong \alpha_i(A) \subseteq G_i$ als Untergruppe.
- **Konstruktion:** Betrachte Rechtsnebenklassen $A \setminus G_i$.

Wähle Repräsentantensystem S_i , in dem die Nebenklasse Adurch 1 repräsentiert wird.

Dann ist die folgende Abbildung λ eine Bijektion:

$$\lambda: A \times (S_i - \{1\}) \rightarrow G_i - A, (a, s) \mapsto a \cdot s.$$

reduziertes Wort w im Amalgam $G_1 *_A G_2 =$

$$w = (a, s_1, ..., s_n) \text{ mit } a \in A, s_k \in S_{i_k} - \{1\}$$

 $\text{für } (i_1, ..., i_n) \in \{1, 2\}^n \text{ mit } i_k \neq i_{k+1}.$

Für alle $g \in G_1 *_A G_2$ existiert genau eine Darstellung:

$$g = f_A(a)f_{i_1}(s_1)...f_{i_n}(s_n) = as_1...s_n.$$

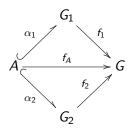
mit $n \ge 0$ als Bild eines reduzierten Wortes.

Diese Darstellung heißt Normalform des Elements g.

Eigenschaften von Amalgamen

Beobachtungen:

▶ Die Faktoren G_i sind mittels der Identifikation $f_i(G_i) = G_i$ im Amalgam $G_1 *_A G_2$ enthalten (Normalform).



> zurück zum Beweis

▶ zurück zum Strukturtheorem

$$\begin{pmatrix} 2^{-k} & -1 \\ 0 & 2^k \end{pmatrix} = \underbrace{\begin{pmatrix} 2^{-k} & 0 \\ 0 & 2^k \end{pmatrix}}_{\in \mathcal{N}} \cdot \underbrace{\begin{pmatrix} 1 & -2^k \\ 0 & 1 \end{pmatrix}}_{\in \mathcal{B}} \in \langle \mathcal{B} \cup \mathcal{N} \rangle,$$

$$\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} = \underbrace{\begin{pmatrix} 2^{-k} & -1 \\ 0 & 2^k \end{pmatrix}}_{\in \langle \mathcal{B} \cup \mathcal{N} \rangle} \cdot \underbrace{\begin{pmatrix} 1 & x' \\ 0 & 1 \end{pmatrix}}_{\in \mathcal{B}} \cdot \underbrace{\begin{pmatrix} 2^k & 1 \\ 0 & 2^{-k} \end{pmatrix}}_{\in \langle \mathcal{B} \cup \mathcal{N} \rangle} \in \langle \mathcal{B} \cup \mathcal{N} \rangle,$$

$$\begin{pmatrix} 2^{-l} & 0 \\ -1 & 2^l \end{pmatrix} = \underbrace{\begin{pmatrix} 1 & 0 \\ -2^l & 1 \end{pmatrix}}_{\in \mathcal{B}} \cdot \underbrace{\begin{pmatrix} 2^{-l} & 0 \\ 0 & 2^l \end{pmatrix}}_{\in \mathcal{N}} \in \langle \mathcal{B} \cup \mathcal{N} \rangle,$$

$$\begin{pmatrix} 1 & 0 \\ y & 1 \end{pmatrix} = \underbrace{\begin{pmatrix} 2^l & 0 \\ 1 & 2^{-l} \end{pmatrix}}_{\in \langle \mathcal{B} \cup \mathcal{N} \rangle} \cdot \underbrace{\begin{pmatrix} 1 & 0 \\ y' & 1 \end{pmatrix}}_{\in \mathcal{B}} \cdot \underbrace{\begin{pmatrix} 2^{-l} & 0 \\ -1 & 2^l \end{pmatrix}}_{\in \langle \mathcal{B} \cup \mathcal{N} \rangle} \in \langle \mathcal{B} \cup \mathcal{N} \rangle.$$

$$W = N/T \stackrel{!}{=} \langle s_1 T, s_2 T \rangle \text{ mit } s_1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, s_2 = \begin{pmatrix} 0 & -2^{-1} \\ 2 & 0 \end{pmatrix}.$$

Zerlege:

$$q=2^I ilde{q}$$
 mit $I\in\mathbb{Z},
u_2(ilde{q})=0$ und $q^{-1}=2^{-I} ilde{q}^{-1}$ mit $u_2(ilde{q}^{-1})=0.$

$$W = N/T \stackrel{!}{=} \langle s_1 T, s_2 T \rangle \text{ mit } s_1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, s_2 = \begin{pmatrix} 0 & -2^{-1} \\ 2 & 0 \end{pmatrix}.$$

Zerlege:

$$q=2^I ilde{q} ext{ mit } I \in \mathbb{Z},
u_2(ilde{q})=0 ext{ und}$$
 $q^{-1}=2^{-I} ilde{q}^{-1} ext{ mit }
u_2(ilde{q}^{-1})=0.$

Es bleibt zu zeigen:
$$\begin{pmatrix} 2^{l} & 0 \\ 0 & 2^{-l} \end{pmatrix} \in \langle s_1 T, s_2 T \rangle$$
.

$$W = N/T \stackrel{!}{=} \langle s_1 T, s_2 T \rangle \text{ mit } s_1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, s_2 = \begin{pmatrix} 0 & -2^{-1} \\ 2 & 0 \end{pmatrix}.$$

Zerlege:

$$q=2^I ilde{q}$$
 mit $I\in\mathbb{Z},
u_2(ilde{q})=0$ und $q^{-1}=2^{-I} ilde{q}^{-1}$ mit $u_2(ilde{q}^{-1})=0.$

Es bleibt zu zeigen:
$$\begin{pmatrix} 2^{l} & 0 \\ 0 & 2^{-l} \end{pmatrix} \in \langle s_1 T, s_2 T \rangle$$
.

Aber es gilt:

$$\begin{pmatrix} 2^{I} & 0 \\ 0 & 2^{-I} \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -2^{-1} \\ 2 & 0 \end{pmatrix} \end{pmatrix}^{I} (\pm \mathbf{1}_{2}) = (s_{1}s_{2})^{I} \underbrace{(\pm \mathbf{1}_{2})}_{\in \mathcal{I}}.$$

▶ Wegen $\nu_2(d) = 0, \nu_2(b) \ge 0$ und $\nu_2(c) \ge 1$ gilt:

$$\underbrace{\begin{pmatrix} 1 & 0 \\ 2^{2}d^{-1}b & 1 \end{pmatrix}}_{\in B} s\tilde{b}w = \pm \begin{pmatrix} -2^{l-1}c & -2^{-l-1}d \\ -2^{l+1}(cd^{-1}b - a) & 0 \end{pmatrix},$$

$$\underbrace{\begin{pmatrix} 1 & 0 \\ 2^{2}d^{-1}b & 1 \end{pmatrix}}_{\in B} s\tilde{b}w \underbrace{\begin{pmatrix} 1 & 0 \\ -2^{2l-2}d^{-1}c & 1 \end{pmatrix}}_{\in B}$$

$$= \pm \begin{pmatrix} 0 & -2^{-l-1}d \\ -2^{l+1}(cd^{-1}b - a) & 0 \end{pmatrix}.$$

Damit können wir folgern:

$$\underbrace{\begin{pmatrix} 1 & 0 \\ 2^{2}d^{-1}b & 1 \end{pmatrix}}_{\in B} s\tilde{b}w \underbrace{\begin{pmatrix} 1 & 0 \\ -2^{2l-2}d^{-1}c & 1 \end{pmatrix}}_{\in B} T$$

$$= \pm \begin{pmatrix} 0 & -2^{-l-1}d \\ -2^{l+1}(cd^{-1}b - a) & 0 \end{pmatrix} T$$

$$= \underbrace{\begin{pmatrix} 0 & -2^{-l-1} \\ 2^{l+1} & 0 \end{pmatrix}}_{=s_{2}(s_{1}s_{2})^{l}T=sw} T.$$

> zurück zum Beisniel des Tits-Systems

Wir definieren zunächst den Homomorphismus:

$$\varphi: P_1 *_B P_2 \to G$$
, mittels $P_i \hookrightarrow G$.

Wir definieren zunächst den Homomorphismus:

$$\varphi: P_1 *_B P_2 \to G$$
, mittels $P_i \hookrightarrow G$.

 \blacktriangleright Zur Surjektivität: Da φ von den Inklusionen induziert wird, gilt:

$$P_1, P_2 \subseteq Im(\varphi) \subseteq G$$
 Untergruppe $\rightarrow \langle P_1, P_2 \rangle \subseteq Im(\varphi)$.

Sei $G'=< P_1, P_2>\subseteq G$ eine Untergruppe. Es gilt $B\subseteq P_1$, also auch $B\subseteq G'$.

Wir definieren zunächst den Homomorphismus:

$$\varphi: P_1 *_B P_2 \to G$$
, mittels $P_i \hookrightarrow G$.

 \blacktriangleright Zur Surjektivität: Da φ von den Inklusionen induziert wird, gilt:

$$P_1, P_2 \subseteq \mathit{Im}(\varphi) \subseteq G$$
 Untergruppe $\rightarrow \langle P_1, P_2 \rangle \subseteq \mathit{Im}(\varphi)$.

Sei $G'=< P_1, P_2>\subseteq G$ eine Untergruppe. Es gilt $B\subseteq P_1$, also auch $B\subseteq G'$. Wegen

$$\mathcal{P}(S)\stackrel{\simeq}{\to} \{G\subseteq W|G \text{ Untergruppe mit } B\subseteq G\}, R\mapsto P_R$$
 folgt $G'=P_T$ für eine Teilmenge $T\subseteq S$.

▶ Angenommen, $T \subsetneq S$, dann gilt $G' = P_T = P_i$ oder $G' = P_{\emptyset} = B$.

Andererseits gilt $s_1, s_2 \in G' = P_T$, Widerspruch, da P_i nach der Bruhat-Zerlegung nur ein s_i (bzw. B kein $s \in S$) enthält.

Folglich gilt: $G' = P_S = G$, also: $G = G' \subseteq Im(\varphi)$, d.h. φ ist surjektiv.

▶ Zur Injektivität: Wir zeigen: $\tilde{g} \in ker(\varphi) \Rightarrow \tilde{g} = 1$. Sei $\tilde{g} = bp_1...p_n$ mit $b \in B, p_j \in P_{i_j} - B$ und $i_j \neq i_{j+1}$. ▶ Normalform

▶ Zur Injektivität: Wir zeigen: $\tilde{g} \in ker(\varphi) \Rightarrow \tilde{g} = 1$. Sei $\tilde{g} = bp_1...p_n$ mit $b \in B, p_j \in P_{i_j} - B$ und $i_j \neq i_{j+1}$. ▶ Normalform

Falls n=0 gilt, so ist $\tilde{g}\in B$ und $\varphi|_B$ ist injektiv. Also folgt $\tilde{g}=1$.

▶ Zur Injektivität: Wir zeigen: $\tilde{g} \in ker(\varphi) \Rightarrow \tilde{g} = 1$. Sei $\tilde{g} = bp_1...p_n$ mit $b \in B, p_j \in P_{i_j} - B$ und $i_j \neq i_{j+1}$. ▶ Normalform

Falls n=0 gilt, so ist $\tilde{g}\in B$ und $\varphi|_B$ ist injektiv. Also folgt $\tilde{g}=1$.

Für $n \geq 1$ ist $w := s_{i_1}...s_{i_n} \in W = D_{\infty}$ mit $s_{i_j} \neq s_{i_{j+1}}$ aus S gilt:

$$I(w) = n \ge 1$$
 , also $w \ne 1$.

Andererseits folgt mit der Bruhat-Zerlegung: $P_{i_j} - B = Bs_{i_j}B$. Für die Normalform gilt also:

$$\tilde{g} = bp_1...p_n \in Bs_{i_1}B...Bs_{i_n}B \stackrel{!}{=} Bs_{i_1}...s_{i_n}B = BwB.$$

Andererseits folgt mit der Bruhat-Zerlegung: $P_{i_j} - B = Bs_{i_j}B$. Für die Normalform gilt also:

$$\tilde{g} = bp_1...p_n \in Bs_{i_1}B...Bs_{i_n}B \stackrel{!}{=} Bs_{i_1}...s_{i_n}B = BwB.$$

Da φ von den Inklusionen induziert wird, folgt:

$$\varphi(\tilde{g}) = g \in B \underbrace{w}_{\neq 1} B.$$

Andererseits folgt mit der Bruhat-Zerlegung: $P_{i_j} - B = Bs_{i_j}B$. Für die Normalform gilt also:

$$\tilde{g} = bp_1...p_n \in Bs_{i_1}B...Bs_{i_n}B \stackrel{!}{=} Bs_{i_1}...s_{i_n}B = BwB.$$

Da φ von den Inklusionen induziert wird, folgt:

$$\varphi(\tilde{g}) = g \in B \underbrace{w}_{\neq 1} B.$$

Mit der Bruhat-Zerlegung folgt $g \notin B$. Also $g \neq 1_G$, Widerspruch zu $\tilde{g} \in ker(\varphi)$.

Damit folgt die Injektivität.

Insgesamt ist φ ein Gruppenisomorphismus. \square Describe zum Vortrag

▶ Zeige: $P_1 = B \cup Bs_1B = SL_2(\mathcal{O}_2)$.

▶ Zeige: $P_1 = B \cup Bs_1B = SL_2(\mathcal{O}_2)$. "⊆": $B \subseteq SL_2(\mathcal{O}_2)$, $s_1 \in SL_2(\mathcal{O}_2)$ und $SL_2(\mathcal{O}_2) \subseteq G$ Untergr.

▶ Zeige: $P_1 = B \cup Bs_1B = SL_2(\mathcal{O}_2)$.

 $\text{``\subseteq'': } B\subseteq SL_2(\mathcal{O}_2)\text{, } s_1\in SL_2(\mathcal{O}_2)\text{ und } SL_2(\mathcal{O}_2)\subseteq G\text{ Untergr.}$

" \supseteq ": $P_1 \subseteq G$ Untergruppe und für $x,y \in \mathcal{O}_2$ gilt:

$$\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \in B,$$

$$\begin{pmatrix} 1 & 0 \\ y & 1 \end{pmatrix} = \underbrace{\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}}_{\in Bs_1B} \cdot \underbrace{\begin{pmatrix} 1 & -y \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}}_{\in Bs_1B} \in P_1.$$

Also
$$\left\langle \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ y & 1 \end{pmatrix} \middle| x, y \in \mathcal{O}_2 \right\rangle = SL_2(\mathcal{O}_2) \subseteq P_1.$$

Zeige:

$$P_2 = B \cup Bs_2B = \left\{ \begin{pmatrix} a & 2^{-1}b \\ 2c & d \end{pmatrix} \middle| \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathcal{O}_2) \right\} =: M.$$

Zeige:

$$P_2 = B \cup Bs_2B = \left\{ \begin{pmatrix} a & 2^{-1}b \\ 2c & d \end{pmatrix} \middle| \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathcal{O}_2) \right\} =: M.$$

"⊆": $B \subseteq M$, $s_2 \in M$ und $M \subseteq G$ Untergruppe.

Zeige:

$$P_2 = B \cup Bs_2B = \left\{ \begin{pmatrix} a & 2^{-1}b \\ 2c & d \end{pmatrix} \middle| \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathcal{O}_2) \right\} =: M.$$

"⊆": $B \subseteq M$, $s_2 \in M$ und $M \subseteq G$ Untergruppe.

"⊇": $P_2 \subseteq G$ Untergruppe und für $x, y \in \mathcal{O}_2$ gilt:

$$\begin{pmatrix} 1 & 0 \\ y & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 \\ 2y & 1 \end{pmatrix} \in B,$$

$$\nu_2(x) \ge 1 \rightsquigarrow \begin{pmatrix} 1 & 2^{-1}x \\ 0 & 1 \end{pmatrix} \in B,$$

$$\nu_2(x) = 0 \rightsquigarrow \begin{pmatrix} 0 & 2^{-1} \\ -2 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 2x & 1 \end{pmatrix} \begin{pmatrix} 0 & -2^{-1} \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 2^{-1}x \\ 0 & 1 \end{pmatrix} \in P_2$$

► Zeige:

$$P_2 = B \cup Bs_2B = \left\{ \begin{pmatrix} a & 2^{-1}b \\ 2c & d \end{pmatrix} \middle| \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathcal{O}_2) \right\} =: M.$$

Haben für $x, y \in \mathcal{O}_2$ gezeigt:

$$\left\{\begin{pmatrix} a & 2^{-1}b \\ 2c & d \end{pmatrix} \middle| \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \left\{\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ y & 1 \end{pmatrix}\right\}\right\} \subseteq P_2.$$

Zeige:

$$P_2 = B \cup Bs_2B = \left\{ \begin{pmatrix} a & 2^{-1}b \\ 2c & d \end{pmatrix} \middle| \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathcal{O}_2) \right\} =: M.$$

Haben für $x, y \in \mathcal{O}_2$ gezeigt:

$$\left\{\begin{pmatrix} a & 2^{-1}b \\ 2c & d \end{pmatrix} \middle| \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \left\{\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ y & 1 \end{pmatrix}\right\}\right\} \subseteq P_2.$$

Auch wenn wir Produkte der Matrizen $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ y & 1 \end{pmatrix}$ zulassen, bleibt die Menge in P_2 enthalten. Damit folgt die Behauptung.

► zurück zum Beispiel SL₂(ℚ)