1 Abelian categories

Definition 1.1. Let C be a category. An initial object in C is an object
1 € € such that there exists precisely one arrow ¢ — ¢ for each ¢ € €. Dually,
t € @ is called terminal if one has unique arrows ¢ — ¢ for each ¢ € C.

An object that is both initial and terminal is called a zero object.

Remark. If C has a zero object z, it is unique up to isomorphism and for each
a,b € € there is a unique morphism

b

0
called the zero morphism from a to b.

Definition 1.2. Let € be a category with zero object and a L b bea
morphism. The (co)kernel of f is the (co)equalizer of f,0:a — b.
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Definition 1.3. A locally small category A is said to be abelian if the
following conditions hold:

(i) A is preadditive: all of its hom-sets are abelian groups such that
composition is bilinear, i.e. for fi, fo :a — b and ¢1,92 : b — ¢,

(91 +g2) o (fi+ fo) =(g10 f1) + (910 f2) + (g2 0 f1) + (g2 0 fa);

(ii) A has all finite products and coproducts (and they are isomorphic);

)
(ili) A has a zero object;
(iv) Every morphism in A has a kernel and a cokernel;
)

(v) Every monomorphism (resp. epimorphism) is normal, meaning it is
the kernel (resp. cokernel) of some morphism.



Example. Let A be an abelian category. A chain complex in A is a collection
(Ch, dy)nez of morphisms d,, : C,, — C,,_; such that d,, o d,,;; = 0.

One may form the category Chn(A) of chain complexes in A by looking
at chain complexes as functors Z — A and having morphisms be natural
transformations between them:

— Cn—l—l ? Cn 7 Cn—l —
lfnfl lfn lfn«kl
E— D’I’L-‘rl 7 D’I’L 7 D’I’L—l E—

Chn(A) is then also an abelian category.

Definition 1.4. Let A be an abelian category. The image of a morphism f

is im f := ker(coker f). A sequence of morphisms (- -+ — a, In, Upyqp —> . ..)
is called an exact sequence when im f, 1 = ker f,,, n € Z.
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Definition 1.5. A non-empty category J is called filtered if
e given any j,j' € J, there is a k € J with arrows j — k, j/ — k;

e for every pair of parallel arrows ¢ = j, there exists £ € J with a
morphism 7 — k£ making ¢ = j — k commute.

Graphically, the following commutative diagrams always have solutions:

Definition 1.6. Let A be an abelian category. One may require additional
axioms on A, called the Grothendieck axioms:



(AB3+AB3*) A is (co)complete;

(AB4+AB4*) The product (resp. coproduct) of any family of epis (resp. monos) is
an epi (resp. mono);

(AB5) Filtered colimits are exact, i.e. given exact sequences
"'—>Clj—>bj—>6j—>...
indexed by a filtered category J, the sequence

--+ — colima; — colimb; — colime; — ...
jeJ jeJ jeJ

is also exact;

(ABG6) If (I;),es is a family of filtered categories with functors I; — A, i — a;,
then there is an isomorphism

colim | fa;, — Hcolim a;,
i€l - ! i;€15
jeJ jeJ

2 Condensed abelian groups

Definition 2.1. A condensed abelian group is a contravariant functor
T : Prof — Ab such that:

(S1) T turns finite coproducts into products i.e. given X,Y profinite, there
is an isomorphism

T(XUY) = T(X) x T(Y);
(S2) If the following is a pullback square with f surjective

XxgX 2y X

lpz lf
x—! B

then T turns it into an equalizer diagram:

T(B) ——— T(X) = T(X x5 X)



Proposition 2.1. The category of condensed abelian groups is equivalent to
the category of contravariant functors ED — Set satisfying (S1).

Lemma 2.1. Limits in functor categories are computed pointwise. More
precisely, let C' be a category and

F:J — Fun (C°, Ab)
Jj— M;
be a diagram. Then the limit of F' exists and is given by
(i M) () = iy (M €)).
Proof. This comes out easily once one uses the equivalence

Fun(J, Fun(C°?, Ab)) — Fun(J x C°P, Ab)
i B (G,0) o (Fy(0))

Theorem 2.1. CondAb is an abelian category satisfying all of Grothendieck’s
axrioms.

Proof. Let M;, j € J be condensed abelian groups. Let’s show that hHJI M;
JE
(seen as an object in Fun (C°P, Ab)) satisfies (S1):

(lim M;)(S1 U Ss) = ljeII}(Mj(Sl LI .Ss))

jeJ
= Lim(M;(S1) x M;(52))
jeJ
= lim M](Sl) X hm M](SQ)
jeJ

jed

From that, it is easy to see that CondAb is abelian: properties (ii), (iii),
(iv) and (v), as well as (AB3), (AB4), (AB5) and (AB6), are all about
(co)limits and are satisfied since Ab satisfies them (so the lemma guar-
antees it for CondAb as well). Also, given M, N € CondAb and natu-
ral transformations vy, : M — N, we may define vy + 15 pointwise by
(1 + 12)(S) = v1(5) + 12(5).

|



Definition 2.2. A category C' is said to be generated by G C Obj(C if
given any two distinct morphisms a = b, there is an object g € G such that
the following diagram does not commute:

Definition 2.3. An object ¢ € C is said to be

e projective if given an epimorphism 7 : € — d, any morphism f : ¢ — d
admits a lift f:c — e:
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This is equivalent to Hom(c, —) preserving epimorphisms (if C' is abelian,
this is also equivalent to Hom(c, —) being exact);

e compact if Hom(c, —) commutes with filtered colimits.

Lemma 2.2 (Yoneda Lemma). If F': C°° — Set is a contravariant func-
tor, then for each c € C', there is a natural bijection

Nat(Hom(—,¢), F) — F(c)
v i— v,(id,)

Theorem 2.2 (Freyd’s adjoint functor theorem). If C is complete and
R : C — D is a functor satisfying the “solution set condition”, then R is
continuous (resp. cocontinuous) < R is a right (resp. left) adjoint.

Theorem 2.3. CondAb is generated by compact projective objects.

Proof. The forgetful functor U : CondAb — CondSet is continuous, so it has
a left adjoint T — Z[T] by Freyd’s adjoint functor theorem:

Z[—] : CondSet = CondAb : U
T s Z|T)
M < M

More explicitly, Z[T] is the so called sheafification of the functor

ZoT :ED — Ab
S — Z[T(S)]



meaning it is the image of Z o T" under the left adjoint of the inclusion
i : CondAb — Fun(ED°P, Ab).

Let M be a condensed abelian group. Given an e.d. set S, we may form
the condensed set S = C(—,S) and get natural isomorphisms

Hom(Z[S], M) = Hom(S, M)
= Nat(C(—, S), M)
= M(S)

Hence we may study the functor Hom(Z(S), —) by looking at —(.5) in-
stead. Using that, let’s show that the Z[S] are projective compact generators:

¢ [Compact] Immediate, since (ch)éi}n M;)(S) = C?gn(Mj(S))'

e [Projective] In general, an arrow f : a — b is an epimorphism < the
following is a pushout square:

a % b
fl idl
b —45 b
In our case, given an epimorphism v : M — N, we get pushout squares
M —Y—+ N M(S) —=~ N(S)
Vl idl Vsl idl
N4y N N(S) —95 N(S)

so —(S) preserves epimorphisms, i.e. Z(S) is projective.

e [Generation| Let M € CondAb and consider all extremally discon-
nected sets S; with an arrow v; : S; — M, 5 € J.

Z[5) ——— M



If we show that @ v; is an epimorphism, then given parallel arrows M =

N, the diagram EPZ[S;] Y u — N will not commute, and consequently

Z[Sg] =5 M = N will not commute for some k € .J.

Define the poset of subobjects of M as the set of isomorphism classes
of monomorphisms into M with partial order defined by M’ < M" iff there
is a factorization

M — M

L

Ml/

This has a subposet given by monomorphisms M’ — M admitting an
epimorphism € Z[S;] - M’, and, given a chain --- < M) < M, < ...,
the image of P M{Z_ — M is an upper bound. So Zorn’s lemma guarantees
the existence of a maximal subobject M’ — M. We want to show that
M = M.

Suppose that M /M’ := coker(M' — M) # 0. Then Hom(Z[S], M/M') #
0 for some S, so there is a non-zero map f : Z[S] — M /M’ lifting to a map
f:2Z[S] — M:

AN — M/M'
So im f # 0 and, given an epimorphism v/ : @D Z[S;] - M', there is a

factorization

PzIs)) @ 28] L M@ imf — M
M’

So M' < M’ @ imf, contradicting the maximality of M’. Therefore
M/M'=0,ie. M'= M. |

Definition 2.4. An abelian category with a generator satisfying (AB3) and
(ABb)) is called a Grothendieck category.
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