
1 Abelian categories

Definition 1.1. Let C be a category. An initial object in C is an object
i ∈ C such that there exists precisely one arrow i→ c for each c ∈ C. Dually,
t ∈ C is called terminal if one has unique arrows c→ t for each c ∈ C.

An object that is both initial and terminal is called a zero object.

Remark. If C has a zero object z, it is unique up to isomorphism and for each
a, b ∈ C there is a unique morphism

a z b
0

called the zero morphism from a to b.

Definition 1.2. Let C be a category with zero object and a
f→ b be a

morphism. The (co)kernel of f is the (co)equalizer of f, 0 : a→ b.

c c

kerf cokerf

a b a b
f

0

∃!

f

0

∃!

Definition 1.3. A locally small category A is said to be abelian if the
following conditions hold:

(i) A is preadditive: all of its hom-sets are abelian groups such that
composition is bilinear, i.e. for f1, f2 : a→ b and g1, g2 : b→ c,

(g1 + g2) ◦ (f1 + f2) = (g1 ◦ f1) + (g1 ◦ f2) + (g2 ◦ f1) + (g2 ◦ f2);

(ii) A has all finite products and coproducts (and they are isomorphic);

(iii) A has a zero object;

(iv) Every morphism in A has a kernel and a cokernel;

(v) Every monomorphism (resp. epimorphism) is normal, meaning it is
the kernel (resp. cokernel) of some morphism.
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Example. Let A be an abelian category. A chain complex in A is a collection
(Cn, dn)n∈Z of morphisms dn : Cn → Cn−1 such that dn ◦ dn+1 = 0.

One may form the category Chn(A) of chain complexes in A by looking
at chain complexes as functors Z → A and having morphisms be natural
transformations between them:

. . . Cn+1 Cn Cn−1 . . .

. . . Dn+1 Dn Dn−1 . . .

fnfn−1 fn+1

Chn(A) is then also an abelian category.

Definition 1.4. Let A be an abelian category. The image of a morphism f

is im f := ker(coker f). A sequence of morphisms (· · · → an
fn−→ an+1 → . . . )

is called an exact sequence when im fn+1
∼= ker fn, n ∈ Z.

a b

im f

c

f

∃!

Definition 1.5. A non-empty category J is called filtered if

• given any j, j′ ∈ J , there is a k ∈ J with arrows j → k, j′ → k;

• for every pair of parallel arrows i ⇒ j, there exists k ∈ J with a
morphism j → k making i ⇒ j → k commute.

Graphically, the following commutative diagrams always have solutions:

j

k i j k

j′

Definition 1.6. Let A be an abelian category. One may require additional
axioms on A, called the Grothendieck axioms:
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(AB3+AB3∗) A is (co)complete;

(AB4+AB4∗) The product (resp. coproduct) of any family of epis (resp. monos) is
an epi (resp. mono);

(AB5) Filtered colimits are exact, i.e. given exact sequences

· · · → aj → bj → cj → . . .

indexed by a filtered category J , the sequence

· · · → colim
j∈J

aj → colim
j∈J

bj → colim
j∈J

cj → . . .

is also exact;

(AB6) If (Ij)j∈J is a family of filtered categories with functors Ij → A, i 7→ ai,
then there is an isomorphism

colim
ij∈Ij

∏
j∈J

aij
∼=−→

∏
j∈J

colim
ij∈Ij

aij

2 Condensed abelian groups

Definition 2.1. A condensed abelian group is a contravariant functor
T : Prof→ Ab such that:

(S1) T turns finite coproducts into products i.e. given X, Y profinite, there
is an isomorphism

T (X ⊔ Y )→ T (X)× T (Y );

(S2) If the following is a pullback square with f surjective

X ×B X X

X B

p2

p1

f

f

then T turns it into an equalizer diagram:

T (B) T (X) T (X ×B X)
f∗

p∗2

p∗1

3



Proposition 2.1. The category of condensed abelian groups is equivalent to
the category of contravariant functors ED→ Set satisfying (S1).

Lemma 2.1. Limits in functor categories are computed pointwise. More
precisely, let C be a category and

F : J → Fun (Cop,Ab)

j 7→Mj

be a diagram. Then the limit of F exists and is given by

(lim
j∈J

Mj)(c) ∼= lim
j∈J

(Mj(c)).

Proof. This comes out easily once one uses the equivalence

Fun(J,Fun(Cop,Ab))
≃−→ Fun(J × Cop,Ab)

i 7→ Fi 7−→ (j, c) 7→ (Fj(c))

■

Theorem 2.1. CondAb is an abelian category satisfying all of Grothendieck’s
axioms.

Proof. Let Mj, j ∈ J be condensed abelian groups. Let’s show that lim
j∈J

Mj

(seen as an object in Fun (Cop,Ab)) satisfies (S1):

(lim
j∈J

Mj)(S1 ⊔ S2) = lim
j∈J

(Mj(S1 ⊔ S2))

= lim
j∈J

(Mj(S1)×Mj(S2))

= lim
j∈J

Mj(S1)× lim
j∈J

Mj(S2)

From that, it is easy to see that CondAb is abelian: properties (ii), (iii),
(iv) and (v), as well as (AB3), (AB4), (AB5) and (AB6), are all about
(co)limits and are satisfied since Ab satisfies them (so the lemma guar-
antees it for CondAb as well). Also, given M,N ∈ CondAb and natu-
ral transformations ν1, ν2 : M → N , we may define ν1 + ν2 pointwise by
(ν1 + ν2)(S) = ν1(S) + ν2(S).

■
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Definition 2.2. A category C is said to be generated by G ⊆ ObjC if
given any two distinct morphisms a ⇒ b, there is an object g ∈ G such that
the following diagram does not commute:

g a b

Definition 2.3. An object c ∈ C is said to be

• projective if given an epimorphism π : e ↠ d, any morphism f : c→ d
admits a lift f̃ : c→ e:

e

c d
f

π
f̃

This is equivalent to Hom(c,−) preserving epimorphisms (if C is abelian,
this is also equivalent to Hom(c,−) being exact);

• compact if Hom(c,−) commutes with filtered colimits.

Lemma 2.2 (Yoneda Lemma). If F : Cop → Set is a contravariant func-
tor, then for each c ∈ C, there is a natural bijection

Nat(Hom(−, c), F ) −→ F (c)

ν 7−→ νc(idc)

Theorem 2.2 (Freyd’s adjoint functor theorem). If C is complete and
R : C → D is a functor satisfying the “solution set condition”, then R is
continuous (resp. cocontinuous) ⇔ R is a right (resp. left) adjoint.

Theorem 2.3. CondAb is generated by compact projective objects.

Proof. The forgetful functor U : CondAb→ CondSet is continuous, so it has
a left adjoint T → Z[T ] by Freyd’s adjoint functor theorem:

Z[−] : CondSet ⇌ CondAb : U

T 7→ Z[T ]
M ←[ M

More explicitly, Z[T ] is the so called sheafification of the functor

Z ◦ T : ED→ Ab

S → Z[T (S)]
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meaning it is the image of Z ◦ T under the left adjoint of the inclusion
i : CondAb ↪→ Fun(EDop,Ab).

Let M be a condensed abelian group. Given an e.d. set S, we may form
the condensed set S = C(−, S) and get natural isomorphisms

Hom(Z[S],M) ∼= Hom(S,M)

= Nat(C(−, S),M)
∼= M(S)

Hence we may study the functor Hom(Z(S),−) by looking at −(S) in-
stead. Using that, let’s show that the Z[S] are projective compact generators:

• [Compact] Immediate, since (colim
j∈J

Mj)(S) ∼= colim
j∈J

(Mj(S)).

• [Projective] In general, an arrow f : a → b is an epimorphism ⇔ the
following is a pushout square:

a b

b b

f

f id

id

In our case, given an epimorphism ν : M → N , we get pushout squares

M N M(S) N(S)

N N N(S) N(S)

νS

id

id

id

id

ν

ν νS

so −(S) preserves epimorphisms, i.e. Z(S) is projective.

• [Generation] Let M ∈ CondAb and consider all extremally discon-
nected sets Sj with an arrow νj : Sj →M , j ∈ J .

Z[Sk] M

⊕
j

Z[Sj]

⊕
j
νj

νk
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If we show that
⊕

νj is an epimorphism, then given parallel arrows M ⇒

N , the diagram
⊕

Z[Sj]
⊕

νj→ M ⇒ N will not commute, and consequently

Z[Sk]
νk→M ⇒ N will not commute for some k ∈ J .

Define the poset of subobjects of M as the set of isomorphism classes
of monomorphisms into M with partial order defined by M ′ ≤ M ′′ iff there
is a factorization

M ′ M

M ′′

This has a subposet given by monomorphisms M ′ ↪→ M admitting an
epimorphism

⊕
Z[Sj] ↠ M ′, and, given a chain · · · ≤ M ′

n ≤ M ′
n+1 ≤ . . . ,

the image of
⊕

M ′
n → M is an upper bound. So Zorn’s lemma guarantees

the existence of a maximal subobject M ′ ↪→ M . We want to show that
M ∼= M ′.

Suppose that M/M ′ := coker(M ′ ↪→M) ̸= 0. Then Hom(Z[S],M/M ′) ̸=
0 for some S, so there is a non-zero map f : Z[S]→ M/M ′ lifting to a map
f̃ : Z[S]→M :

M

Z[S] M/M ′

f̃

f

So im f̃ ̸= 0 and, given an epimorphism ν ′ :
⊕

Z[Sj] ↠ M ′, there is a
factorization

⊕
j

Z[Sj]⊕ Z[S] M ′ ⊕ imf̃ M

M ′

ν′+f̃

So M ′ < M ′ ⊕ imf̃ , contradicting the maximality of M ′. Therefore
M/M ′ = 0, i.e. M ′ ∼= M . ■

Definition 2.4. An abelian category with a generator satisfying (AB3) and
(AB5) is called a Grothendieck category.
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