1 Abelian categories

Definition 1.1. Let \mathcal{C} be a category. An initial object in \mathcal{C} is an object $i \in \mathcal{C}$ such that there exists precisely one arrow $i \rightarrow c$ for each $c \in \mathcal{C}$. Dually, $t \in \mathcal{C}$ is called terminal if one has unique arrows $c \rightarrow t$ for each $c \in \mathcal{C}$.

An object that is both initial and terminal is called a zero object.
Remark. If \mathcal{C} has a zero object z, it is unique up to isomorphism and for each $a, b \in \mathcal{C}$ there is a unique morphism

called the zero morphism from a to b.
Definition 1.2. Let \mathcal{C} be a category with zero object and $a \xrightarrow{f} b$ be a morphism. The (co)kernel of f is the (co)equalizer of $f, 0: a \rightarrow b$.

Definition 1.3. A locally small category A is said to be abelian if the following conditions hold:
(i) A is preadditive: all of its hom-sets are abelian groups such that composition is bilinear, i.e. for $f_{1}, f_{2}: a \rightarrow b$ and $g_{1}, g_{2}: b \rightarrow c$,

$$
\left(g_{1}+g_{2}\right) \circ\left(f_{1}+f_{2}\right)=\left(g_{1} \circ f_{1}\right)+\left(g_{1} \circ f_{2}\right)+\left(g_{2} \circ f_{1}\right)+\left(g_{2} \circ f_{2}\right) ;
$$

(ii) A has all finite products and coproducts (and they are isomorphic);
(iii) A has a zero object;
(iv) Every morphism in A has a kernel and a cokernel;
(v) Every monomorphism (resp. epimorphism) is normal, meaning it is the kernel (resp. cokernel) of some morphism.

Example. Let A be an abelian category. A chain complex in A is a collection $\left(C_{n}, d_{n}\right)_{n \in \mathbb{Z}}$ of morphisms $d_{n}: C_{n} \rightarrow C_{n-1}$ such that $d_{n} \circ d_{n+1}=0$.

One may form the category $\operatorname{Chn}(A)$ of chain complexes in A by looking at chain complexes as functors $\mathbb{Z} \rightarrow A$ and having morphisms be natural transformations between them:

$\operatorname{Chn}(A)$ is then also an abelian category.
Definition 1.4. Let A be an abelian category. The image of a morphism f is $\operatorname{im} f:=\operatorname{ker}(\operatorname{coker} f)$. A sequence of morphisms $\left(\cdots \rightarrow a_{n} \xrightarrow{f_{n}} a_{n+1} \rightarrow \ldots\right)$ is called an exact sequence when $\operatorname{im} f_{n+1} \cong \operatorname{ker} f_{n}, n \in \mathbb{Z}$.

Definition 1.5. A non-empty category J is called filtered if

- given any $j, j^{\prime} \in J$, there is a $k \in J$ with arrows $j \rightarrow k, j^{\prime} \rightarrow k$;
- for every pair of parallel arrows $i \rightrightarrows j$, there exists $k \in J$ with a morphism $j \rightarrow k$ making $i \rightrightarrows j \rightarrow k$ commute.

Graphically, the following commutative diagrams always have solutions:

$i \longrightarrow j---->k$

Definition 1.6. Let A be an abelian category. One may require additional axioms on A, called the Grothendieck axioms:
$\left(\mathrm{AB} 3+\mathrm{AB} 3^{*}\right) A$ is (co)complete;
(AB4 $\left.4 \mathrm{AB} 4^{*}\right)$ The product (resp. coproduct) of any family of epis (resp. monos) is an epi (resp. mono);
(AB5) Filtered colimits are exact, i.e. given exact sequences

$$
\cdots \rightarrow a_{j} \rightarrow b_{j} \rightarrow c_{j} \rightarrow \ldots
$$

indexed by a filtered category J, the sequence

$$
\cdots \rightarrow \operatorname{colim}_{j \in J} a_{j} \rightarrow \underset{j \in J}{\operatorname{colim}} b_{j} \rightarrow \underset{j \in J}{\operatorname{colim}} c_{j} \rightarrow \ldots
$$

is also exact;
(AB6) If $\left(I_{j}\right)_{j \in J}$ is a family of filtered categories with functors $I_{j} \rightarrow A, i \mapsto a_{i}$, then there is an isomorphism

$$
\underset{i_{j} \in I_{j}}{\operatorname{colim}} \prod_{j \in J} a_{i_{j}} \xrightarrow{\cong} \prod_{j \in J} \operatorname{colim}_{i_{j} \in I_{j}} a_{i_{j}}
$$

2 Condensed abelian groups

Definition 2.1. A condensed abelian group is a contravariant functor $T:$ Prof $\rightarrow \mathrm{Ab}$ such that:
(S1) T turns finite coproducts into products i.e. given X, Y profinite, there is an isomorphism

$$
T(X \sqcup Y) \rightarrow T(X) \times T(Y)
$$

(S2) If the following is a pullback square with f surjective

then T turns it into an equalizer diagram:

$$
T(B) \xrightarrow[p_{2}^{*}]{f^{*}} T(X) \xrightarrow[p_{1}^{*}]{\xrightarrow{p_{2}^{*}}} T\left(X \times_{B} X\right)
$$

Proposition 2.1. The category of condensed abelian groups is equivalent to the category of contravariant functors ED \rightarrow Set satisfying (S1).

Lemma 2.1. Limits in functor categories are computed pointwise. More precisely, let C be a category and

$$
\begin{aligned}
F: & J \\
& \rightarrow \text { Fun }\left(C^{\mathrm{op}}, \mathrm{Ab}\right) \\
& j \mapsto M_{j}
\end{aligned}
$$

be a diagram. Then the limit of F exists and is given by

$$
\left(\lim _{j \in J} M_{j}\right)(c) \cong \lim _{j \in J}\left(M_{j}(c)\right) .
$$

Proof. This comes out easily once one uses the equivalence

$$
\begin{aligned}
\operatorname{Fun}\left(J, \operatorname{Fun}\left(C^{\mathrm{op}}, \mathrm{Ab}\right)\right) & \xrightarrow{\simeq} \operatorname{Fun}\left(J \times C^{\mathrm{op}}, \mathrm{Ab}\right) \\
i \mapsto F_{i} & \longmapsto(j, c) \mapsto\left(F_{j}(c)\right)
\end{aligned}
$$

Theorem 2.1. CondAb is an abelian category satisfying all of Grothendieck's axioms.

Proof. Let $M_{j}, j \in J$ be condensed abelian groups. Let's show that $\lim _{j \in J} M_{j}$ (seen as an object in Fun ($\left.C^{\text {op }}, \mathrm{Ab}\right)$) satisfies (S1):

$$
\begin{aligned}
\left(\lim _{j \in J} M_{j}\right)\left(S_{1} \sqcup S_{2}\right) & =\lim _{j \in J}\left(M_{j}\left(S_{1} \sqcup S_{2}\right)\right) \\
& =\lim _{j \in J}\left(M_{j}\left(S_{1}\right) \times M_{j}\left(S_{2}\right)\right) \\
& =\lim _{j \in J} M_{j}\left(S_{1}\right) \times \lim _{j \in J} M_{j}\left(S_{2}\right)
\end{aligned}
$$

From that, it is easy to see that CondAb is abelian: properties (ii), (iii), (iv) and (v), as well as (AB3), (AB4), (AB5) and (AB6), are all about (co)limits and are satisfied since Ab satisfies them (so the lemma guarantees it for CondAb as well). Also, given $M, N \in$ CondAb and natural transformations $\nu_{1}, \nu_{2}: M \rightarrow N$, we may define $\nu_{1}+\nu_{2}$ pointwise by $\left(\nu_{1}+\nu_{2}\right)(S)=\nu_{1}(S)+\nu_{2}(S)$.

Definition 2.2. A category C is said to be generated by $G \subseteq \operatorname{Obj} C$ if given any two distinct morphisms $a \rightrightarrows b$, there is an object $g \in G$ such that the following diagram does not commute:

Definition 2.3. An object $c \in C$ is said to be

- projective if given an epimorphism $\pi: e \rightarrow d$, any morphism $f: c \rightarrow d$ admits a lift $\tilde{f}: c \rightarrow e$:

This is equivalent to $\operatorname{Hom}(c,-)$ preserving epimorphisms (if C is abelian, this is also equivalent to $\operatorname{Hom}(c,-)$ being exact);

- compact if $\operatorname{Hom}(c,-)$ commutes with filtered colimits.

Lemma 2.2 (Yoneda Lemma). If $F: C^{\mathrm{op}} \rightarrow$ Set is a contravariant functor, then for each $c \in C$, there is a natural bijection

$$
\begin{aligned}
\operatorname{Nat}(\operatorname{Hom}(-, c), F) & \longrightarrow F(c) \\
\nu & \longmapsto \nu_{c}\left(\mathrm{id}_{c}\right)
\end{aligned}
$$

Theorem 2.2 (Freyd's adjoint functor theorem). If C is complete and $R: C \rightarrow D$ is a functor satisfying the "solution set condition", then R is continuous (resp. cocontinuous) $\Leftrightarrow R$ is a right (resp. left) adjoint.

Theorem 2.3. CondAb is generated by compact projective objects.
Proof. The forgetful functor U : CondAb \rightarrow CondSet is continuous, so it has a left adjoint $T \rightarrow \mathbb{Z}[T]$ by Freyd's adjoint functor theorem:

$$
\begin{aligned}
\mathbb{Z}[-]: \text { CondSet } & \rightleftharpoons \text { CondAb : } U \\
T & \mapsto \mathbb{Z}[T] \\
M & \leftarrow M
\end{aligned}
$$

More explicitly, $\mathbb{Z}[T]$ is the so called sheafification of the functor

$$
\begin{aligned}
\mathbb{Z} \circ T: \mathrm{ED} & \rightarrow \mathrm{Ab} \\
S & \rightarrow \mathbb{Z}[T(S)]
\end{aligned}
$$

meaning it is the image of $\mathbb{Z} \circ T$ under the left adjoint of the inclusion $i: \operatorname{CondAb} \hookrightarrow \operatorname{Fun}\left(E D^{\mathrm{op}}, \mathrm{Ab}\right)$.

Let M be a condensed abelian group. Given an e.d. set S, we may form the condensed set $\underline{S}=C(-, S)$ and get natural isomorphisms

$$
\begin{aligned}
\operatorname{Hom}(\mathbb{Z}[\underline{S}], M) & \cong \operatorname{Hom}(\underline{S}, M) \\
& =\operatorname{Nat}(C(-, S), M) \\
& \cong M(S)
\end{aligned}
$$

Hence we may study the functor $\operatorname{Hom}(\mathbb{Z}(\underline{S}),-)$ by looking at $-(S)$ instead. Using that, let's show that the $\mathbb{Z}[\underline{S}]$ are projective compact generators:

- [Compact] Immediate, since $\left(\underset{j \in J}{\operatorname{colim}} M_{j}\right)(S) \cong \underset{j \in J}{\operatorname{colim}}\left(M_{j}(S)\right)$.
- [Projective] In general, an arrow $f: a \rightarrow b$ is an epimorphism \Leftrightarrow the following is a pushout square:

In our case, given an epimorphism $\nu: M \rightarrow N$, we get pushout squares

so $-(S)$ preserves epimorphisms, i.e. $\mathbb{Z}(\underline{S})$ is projective.

- [Generation] Let $M \in$ CondAb and consider all extremally disconnected sets S_{j} with an arrow $\nu_{j}: S_{j} \rightarrow M, j \in J$.

If we show that $\bigoplus \nu_{j}$ is an epimorphism, then given parallel arrows $M \rightrightarrows$ N, the diagram $\oplus \mathbb{Z}\left[\underline{S_{j}}\right] \xrightarrow{\oplus \nu_{j}} M \rightrightarrows N$ will not commute, and consequently $\mathbb{Z}\left[\underline{S_{k}}\right] \xrightarrow{\nu_{k}} M \rightrightarrows N$ will not commute for some $k \in J$.

Define the poset of subobjects of M as the set of isomorphism classes of monomorphisms into M with partial order defined by $M^{\prime} \leq M^{\prime \prime}$ iff there is a factorization

This has a subposet given by monomorphisms $M^{\prime} \hookrightarrow M$ admitting an epimorphism $\bigoplus \mathbb{Z}\left[S_{j}\right] \rightarrow M^{\prime}$, and, given a chain $\cdots \leq M_{n}^{\prime} \leq M_{n+1}^{\prime} \leq \ldots$, the image of $\bigoplus M_{n}^{\prime} \rightarrow M$ is an upper bound. So Zorn's lemma guarantees the existence of a maximal subobject $M^{\prime} \hookrightarrow M$. We want to show that $M \cong M^{\prime}$.

Suppose that $M / M^{\prime}:=\operatorname{coker}\left(M^{\prime} \hookrightarrow M\right) \neq 0$. Then $\operatorname{Hom}\left(\mathbb{Z}[\underline{S}], M / M^{\prime}\right) \neq$ 0 for some S, so there is a non-zero map $f: \mathbb{Z}[\underline{S}] \rightarrow M / M^{\prime}$ lifting to a map $\tilde{f}: \mathbb{Z}[\underline{S}] \rightarrow M:$

So im $\tilde{f} \neq 0$ and, given an epimorphism $\nu^{\prime}: \bigoplus \mathbb{Z}\left[S_{j}\right] \rightarrow M^{\prime}$, there is a factorization

So $M^{\prime}<M^{\prime} \oplus \operatorname{im} \tilde{f}$, contradicting the maximality of M^{\prime}. Therefore $M / M^{\prime}=0$, i.e. $M^{\prime} \cong M$.

Definition 2.4. An abelian category with a generator satisfying (AB3) and (AB5) is called a Grothendieck category.

