Geometric reflection groups
Motivation:
Generlize: $W_{3} \geqslant \mathbb{R}^{2}$

$$
(3,3,3) \text { - group }
$$

Question: $U\left(W_{3}, P\right) \cong \mathbb{R}^{2} ?$
$L_{B} \operatorname{Can} \mathbb{R}^{2}$ be tiled by P ?
Spacer of constant curvature

- Euclidean space: \mathbb{E}^{n}

- n-Sphere: \mathbb{S}^{n}
$\longrightarrow \mathbb{S}^{n}:=\left\{x \in \mathbb{R}^{n+1} \mid\|x\|_{2}=1\right\}$
\leadsto constant sectional curvature $=1$.
- Hyperbolic space: $H_{\substack{n \\\left(x_{1}, \cdots, e_{n}, x_{n}+1\right)}}$ (hyperboloid model)

$$
\mathbb{H}^{n}:=\left\{x \in \mathbb{R}^{n} \oplus \mathbb{R} \mid \beta(x, x)=-1, x_{n+1}>0\right\}
$$

with $\beta: \mathbb{R}^{n} \oplus \mathbb{R} \times \mathbb{R}^{n} \oplus \mathbb{R} \rightarrow \mathbb{R}$ bilincor $(x, y) \longmapsto\left\langle x_{1} y\right\rangle_{s+d}-x_{n+1} y_{n+1}$
\leadsto constant sectional curvature $=(-1)$.

Properties:

- $n 22: H^{n}, \mathbb{E}^{n}, S^{n}$ are simply connected.
- After a suitable rescaling any (smooth) simply connected Riemannion manifold with constant sectional curvature is given by $\mathbb{H}^{n}, \mathbb{E}^{n}$ or δ^{n}.
Summarize $\mathbb{H}^{n}, \mathbb{E}^{n}, \mathbb{S}^{n}$ as \mathbb{X}^{n} in dependency of the geometry.
Pocytopes
Definitions
A hyperplane is a (affine) subsoace $H: X$ with codimension 1.
L_{0} induces a map $h: X \longrightarrow \mathbb{R}$ (p.ex inner product
$\sim H$ hyperplane $a=0 \quad h(H)=\{0\}$ complement $u \in X$)
A set $H^{+} \leq X$ is a halfspace
if $\forall x \in H^{+}: \quad h(x) \geq 0$.
D Describe H^{+}via $u \in X$. (u is (normal) inward-pointing

Definition: dihedral angle
Suppose H_{1} and H_{2} are hyperplanes in \mathcal{X}^{n} bounding E_{1} and E_{2} half-spaces with $E_{1} \cap E_{2} \neq \phi$.
Let $x \in H_{1} \cap H_{2}$ and $u_{1} u_{2}$ the inward-pointing unit normals at x. Then

$$
\theta:=\arccos \left(\left\langle u_{1}, u_{2}\right\rangle_{x_{n}}\right)
$$

is the exterior dihedral angle and

$$
\pi-\theta
$$

is the (interior) dihedral angle.

Definition: non-obtuse dihedral angle

- In the above setting the hacf-spaces F_{1} and E_{2} have non-obtuse dihedral angle if
a.) $H_{1} \cap H_{2}=\varnothing$
or b.) $H_{1} \cap H_{2} \neq \phi$ and
the dihedral angle along $H_{1} \cap H_{2}$ is $\leq \frac{\pi}{2}$
- A family of half-spaces $\left\{E_{1}, \ldots, E_{k}\right\} \leq \mathbb{K}^{n}$ has non-obtuse angle, if E_{i} and E_{j} have nonobtuse angle for every $i, j=1, \ldots, k$.
- Let $P^{n} \leq X^{n}$ be a convex polytope and
$F_{1}, \ldots F_{u}$ its codimention-1 faces.
Let $H_{;}$be the hyperplane determined by F_{i} and and let E_{i} be the half-space bounded by $H_{\text {i }}$ which contains P^{n} for every $i=1,1, k$.
The polytope P^{n} has non-obtase dihedral angle if the family $\left\{E_{1},, E_{4}\right\}$ has this property.

Definition: simple polytope
A n-dimensional polytope $P^{n}\left(\leq \mathbb{X}^{n}\right)$ is simple if exactly n codimensional - one faces meet at each vertex.
Examples:

- n-simplex Δ^{n}
- octahedron

Proposition:
Suppose $P^{n} \leq \mathbb{X}^{n}$ is a convex polytope with non-obture dihedral angler. Then P^{n} is simple.
1.) Let $p^{n} \leq \mathbb{S}^{n}$ convex polytope with non-obture angles. Then P^{n} is on n-simpler.
Tanalyze $f(v):=\langle u, v\rangle$ to deduce linear independoncy.
2.) v vertex of $p^{n}, S(v)$ sphere with midpoint v $=0$ apply 1$)$ to $p^{n} \cap S(v)$ $=0 p^{n}$ simple.

Setting for the universal construction
Let

- $p^{n} \leq \mathbb{X}^{n}$ be a convex polytope
- (Ti) $i_{\in I}$ its codim-1 faces.
- $\left(r_{i}\right)_{i \in I}$ be the isometric reflections of X across F_{i}.
- $\bar{W}=\left\langle\left(r_{i}\right)_{i \in I}\right\rangle \quad \leq 1 \operatorname{som}\left(X^{n+1}\right)$

Furthermore, P^{n} has to be simple!
Why?

- all dihedral angles have to be inkgral sabmultipicals of π (ie. $\bar{u} m_{i j}$ between F_{i} and F_{j})
$\Rightarrow a l l$ dihedral angles are non-obtave $\left(m_{j} 22\right)$
$\stackrel{\text { Preposition }}{\Rightarrow D} p^{n}$ is simple.
usn \int If $F_{i} \cap \bar{F}_{j}=\phi$, than $m_{i j}:=\infty, m_{i j}=1$
generates Thus $\left(m_{i j}\right)_{i j \in S}$ is the Coxetor matrix of the $W^{\prime \prime}$ pre-Coxeter-system $\left(\bar{w},\left(r_{i}\right)_{i \in I}\right)$.

Let $(W, S) S=\left\{\left(s, i_{i \in I}\right\}\right.$ the converponding Coxetor system.
\% mirror structure on P^{n} :?
L_{0} mirror corresponding to i is F_{i}
Define the mapping

$$
\phi=\begin{aligned}
& w \\
& s_{i}
\end{aligned} \longmapsto^{W} \overline{r_{i}} .
$$

is a homomorphism(!) and sorjective.
Reminder: Vinberg Theorem:
$\bar{W} \& \mathbb{X}^{n}$ and consider $p^{n} \longleftrightarrow \quad i \quad \mathbb{X}^{n}$ $i\left(\left(p^{n}\right)^{5}\right) \leqslant\left(\mathbb{X}^{n}\right)^{s} \checkmark$. Then there ex. a (unique) extension

Main Theorem
Suppose P^{n} is a simple convex polytope in \mathbb{X}^{n} for $n \geq 2$ and let W be genevatial by p^{n}.
Then the mapping

$$
\tilde{i}_{i}: U\left(w, \rho^{n}\right) \longrightarrow \mathbb{X}^{n}
$$

is a homeomorphism.

Main Corollary
This implies:
a.) $\bar{W} \& \mathbb{X}^{n}$ properly $\sim p \bar{W} \leq 1$ som $\left(\mathbb{X}^{n}\right)$ discrete subgroup
b.) P^{n} is the (strict) fundamental domain of the \bar{w}-action. $\sim \mathbb{X}^{n}$ can be tiled by congruent copies of P^{n}.
proof of the corallory:
The action is \bar{w}-finite.
$=0$ statements follow from the tall last week. \#

Definition: Geometric reflection group
A geometric reflection group is a group W with:

- W? $\mathbb{*}^{n}$
- W is generated by a convex, simple polytope.
to the proof of the main theorem:
- P^{n} rimple convex polytope pl $^{\text {- }}$.

To show: $\tilde{c}: U\left(W, P^{n}\right) \xrightarrow{\longrightarrow} \mathbb{X}^{n}$ is a homeomorphism.
By induction on the the dimension n.
Some notation:

- (s_{n}) is the claim when $\mathbb{X}^{n}=\mathscr{D}^{n} \sim P^{n}=\sigma^{n}$ spherical rimple
- $\left(c_{n}\right)$ is the claim when \mathbb{X}^{n} is replaced by $\beta_{r}(x), x \in \mathbb{X}^{n}, r>0$ P^{n} is replaced by the open simplicial
 cone $C_{r}(x)$
Definition: simplicial cone: $\quad C_{r}(x)=\beta_{r}(x) \cap P^{n}$
- $\left(t_{n}\right)$ is the claim in dimension n. We show:

$$
\left(c_{n}\right) \stackrel{\text { 2.) }}{=} 0\left(t_{n}\right) \stackrel{\swarrow}{=0}\left(J_{n}\right) \stackrel{1}{=}\left(c_{n+1}\right)
$$

Induction beginning $n=2$:
We start with $\left(c_{2}\right)$ ie. in \mathbb{X}^{2} we consider

$$
\begin{aligned}
& \qquad W:=\left\langle s_{1}, s_{2} \mid s_{i}^{2}=1 \quad i=1,2,\left(s_{1} s_{2}\right)^{m / 2}=1\right\rangle \\
& =W=D_{2 m_{12}} \\
& \text { Basic construction of } W_{1} C_{r}(x) \text { : } \\
& \text { Homeomorphism } U\left(W_{1} C_{r}(x)\right) \xrightarrow{\square} B_{r}(x) .
\end{aligned}
$$

$$
\text { Step } 1\left(5_{n}\right)=\left(c_{n+1}\right)
$$

Suppose $C_{r}^{n+1} \leq \mathbb{X}^{n}$ is a simplicial cone of radius r with nonobtuse dihidral angles $\pi / m_{j i}$. Then, the Coxeter group associated to C^{n+1} is the same as the Coketer group associated to σ^{n}.
Why?
The dihedral angles coincide!
Cone (S^{n}) Moreover, there holds:
(1) C^{n+1} is a cone on σ^{n}
\Rightarrow (2) $U\left(W, C^{n+1}\right)$ is a cone on $U\left(W, \sigma^{n}\right)$
(3) an open ball in \mathbb{X}^{n+1} is a cone on \mathbb{S}^{n}

$$
\begin{aligned}
=\tilde{i}: U\left(w, c^{n+1}\right) \sim & \sim \underbrace{B_{r}(x) \subseteq \mathbb{X}^{n+1}}_{n} \\
& \text { Cone }^{B_{n}}\left(S^{n}\right) \\
& \operatorname{Cone}\left(U\left(W, \sigma^{n}\right)\right. \\
& \operatorname{Le}\left(W, C^{n+1}\right)
\end{aligned}
$$

Step 2: $\left(c_{n+1}\right)=0\left(t_{n+1}\right)$
Before we stout with this port, we need to introduce the definition of an \mathbb{X}^{n+1} structure
Definition:
A n-dim. topo. manifold Π^{n+1} has an $X^{n+1}-$ structure if it has an atlas $\left\{\psi_{\alpha}: U_{\alpha} \longrightarrow X^{n}\right\}$, where ($\left.U_{\alpha}\right)_{\alpha \in \in A}$ is an open cover of 17^{n}, homerphic onto it image and $\forall o r, \beta \in A$:

$$
4_{\alpha} \cdot 4_{\beta}^{-1}: 4_{\alpha}\left(u_{\alpha} \cap u_{\beta}\right) \rightarrow \psi_{\beta}\left(u_{\alpha} \cap u_{\beta}\right)
$$

is the restriction of an element of $\operatorname{lom}\left(\mathbb{X}^{n}\right)$.

Claim:
$U\left(W, P^{n+1}\right)$ has an \mathbb{X}^{n+1}-structure! $\Rightarrow \tilde{i}: U\left(w_{1} p^{n+1}\right) — \mathbb{X}^{n+1}$ is a local isometry. proof:

Let $x \in P^{n+1}$, let $S(x)$ denote the set of
 F_{i} which contain x.
Moreover let v_{x} denote the distance from x to the nearest face which doesn't contain x. Let $C_{r_{x}}(x)$ be an open simplicial cone.

By Sonar his Tall e, $\left(W_{S(x)}, S(x)\right)$ is a Coxeter system 150 let's consider an open neighborhood of $[x, x]$ in $U\left(W, P^{n}\right)$ This can be given by $U\left(W_{s(k)}, C_{r_{k}}(k)\right)$.
By otep 1:

$$
U\left(w_{s(x)}, C_{r_{x}}(x)\right) \stackrel{\tilde{i}}{ } \cdot B_{r_{x}}(x) \leq x^{n}
$$

is a homeomorphism. Since \tilde{i} is w-equivarient we have for each $w \in W$
is also a homeomorphism.
With other word

$$
\left(w-U\left(w_{s(x)}, C_{r_{k}}(x)\right)\right)_{\substack{x \in P^{n} \\ w \in w^{\prime}}}
$$

is ar open cover for $U\left(W, p^{n}\right)$ and $(b x, w)_{w \in p^{n}}$ is an atlas.
calculate the chart change(!)
Thus, U(W, $\left.P^{n+1}\right)$ has an \mathbb{X}^{n+1}-structure.
Facts

$$
=2\left(\ln , p^{n+1}\right)
$$

- An \mathbb{X}^{n+1} - structure on Π^{n+1} induces one on its coniversal cover π^{n+1}.
- If π^{n+1} is metrically complete then the developing map

$$
D: \hat{\Pi}^{n+1} \longrightarrow \mathbb{X}^{n+1}
$$

is a universal covering map.
(*) Assume for a moment that $U\left(\omega_{1} p^{n+1}\right)$ is metrically complete.
Since $U\left(W_{1} P^{n+1}\right)$ is connected the developlog map $D: \widetilde{U\left(w_{1} p^{n+1}\right)}$ - ${X^{n+1} \text { is locally given by }}^{\text {is }}$

$$
\hat{i}: 2\left(w, p^{n-1}\right) \longrightarrow x^{n+1}
$$

Moreover, \tilde{i} is globally defined $50 \tilde{\dot{c}}$ is a covering map.
Since \mathbb{X}^{n} is simply connected we have

$$
u\left(\widetilde{w_{1} p^{n+1}}\right)=u\left(w_{1} p^{n+1}\right)
$$

and $D=\tilde{i}$.
Hence i is a global homeomorphism
to (*)
$p^{n \times 1}$ Suppose $\underline{\left.\underline{\left(x_{k}\right.}\right)_{n \in \mathbb{N}}} \leq U\left(W, p^{n+1}\right)$ is a Candy-sequena
Since $u\left(w, p^{n+1}\right) / w=p^{n+1}$, for every x_{k} there $<x . g_{k} \in W$ such that $g_{k} x_{k} \in P^{n+1}$. Since P^{n+1} is compact there ex. a convergent

We note that W I $U\left(W, p^{n+1}\right)$ isometrically and proper (bal le (lot weasel)
Find some $\left(g_{k_{0}}\right)^{-1}$ s.t. $x_{k_{j}}$ is convergent (!)

Selected examples:
Let $p^{2} \leq \mathbb{X}^{2}$ be an m-jon.
Now, the (local) Gauß-Bannet can be applied, ie

$$
=0 \varepsilon \cdot A_{\text {read }}\left(P^{2}\right)+0+\sum_{i s m}\left(\pi-\alpha_{i}\right)=2 \pi(m-m+1)=1 \cdot 2 \pi
$$

with $\varepsilon \in\{-1,0,1\}$ in dependency of the choice of X^{n}.

$$
\begin{equation*}
\Rightarrow \quad \sum_{i \leq m} \alpha_{i} \equiv(m-2) \pi \tag{*}
\end{equation*}
$$

Example 1: spherical case
Let $p^{2} \leq S^{2}$ be a spherical polygon. Therefore $\alpha_{i} \leq \frac{\pi}{2}$. Why?

Otherwise, two great-circle would meet on the others side and there they woúrol have an intersecting angle $<\frac{\pi}{2} \delta$ By (x) it follows $m<4$.
Therfae $\frac{\pi}{m_{1}}+\frac{\pi}{m_{2}}+\frac{\pi}{m_{3}}>\pi$. Aosone that $m_{i} i=1,2,3$ are Some calculations shows that integers the triplets

solve (*).
2.) Eulidian care

The fare we consider the equation $\sum_{i s m} a_{i}=(m-2) \pi$
Since $\quad \alpha_{1} \leq \frac{\pi}{2} \quad \Rightarrow \quad m \leq 4 \Rightarrow m_{1}=m_{2}=m_{3}=m_{4}=2$
$n p$ standard rectangular tiling of \mathbb{E}^{2}.
So let $m=3$. An analogue calculation as above shows that the equation

$$
\frac{1}{m_{1}}+\frac{1}{m_{2}}+\frac{1}{m_{3}}=1
$$

is solved by $(2,4,6) \quad \Delta$

$$
(2,3,6)
$$

$$
(3,3,3)
$$

ns Conespandirg reflection groups are called Euclidean reflection groups.
3.) Hyperbolic care:

We have to solve

$$
\frac{1}{m 1}+\ldots+\frac{1}{m_{n}}<1
$$

Thus, there ex. infinity many tupe ${ }^{5}$ that solve the inequality above.

$(7,3)$-tiling

Dish mode (with $(2,3,7)$ tiling no M.C. Escher.

