The Basic construction \mathcal{U}

Julian Blawid

Introduction

- For a Coxeter system (W, S), a space X and a family of subspaces $\left(X_{s}\right)_{s \in S}$, we want to construct a space $\mathcal{U}(W, X)$
- The idea of the construction is to paste together copies of X, one for each element of W
- Our construction will be slightly more general than needed, we will construct our space \mathcal{U} for an arbitrary group G
- This can be useful in the discussion of geometric realizations of buildings

Mirror structures

- A mirror structure on a space X consists of an index set and a family of closed subspaces $\left(X_{s}\right)_{s \in S}$ (the mirrors) of X
- We assume, that each $x \in X$ has a neighborhood, that intersects only finitely many of the X_{s}
- We set

$$
S(x):=\left\{s \in S: x \in X_{s}\right\}
$$

For $T \subseteq X$ nonempty, we set

$$
X_{T}:=\bigcap_{t \in T} X_{t} \quad \text { and } \quad X^{T}:=\bigcup_{t \in T} X_{t}
$$

and $X_{\emptyset}=X$ and $X^{\emptyset}=\emptyset$

Definition

A family of groups over a set S of a group G consists of subgroups $B \subseteq G$ and $\left(G_{s}\right)_{s \in S}$ s.t. each G_{s} contains B

- We will assume, that G is a topological group and B is an open subgroup s.t. G / B has the discrete topology
- For G discrete, we will just consider the discrete topology
- In our case, we will always assume, that $B=\{i d\}$

Definition $(\mathcal{U}(W, X))$

- Suppose X is a mirrored space over S and $\left(G_{S}\right)_{s \in S}$ is a family of subgroups of G over S
- Define an equivalence relation \sim on $G \times X$ by

$$
(h, x) \sim(g, y) \Longleftrightarrow x=y \text { and } h^{-1} g \in G_{S(x)}
$$

- Consider $G / B \times X$ endowed with the product topology and define

$$
(G / B \times X) / \sim
$$

Example
Let $G=\left\langle s, t, u: s^{2}=t^{2}=u^{2}=(s t)^{3}=(u t)^{3}=(u s)^{3}=1\right\rangle$
and $X=\operatorname{Cone}\left\{\sigma_{s}, \sigma_{t}, \sigma_{u}\right\}$

$$
S(x)=\left\{\begin{array}{lll}
\phi & x \in\left\{\sigma_{s}, \sigma_{t}, \sigma_{u}\right\} & x \\
\{s\} & x=\sigma_{s} \\
\{t\} & x=\sigma_{t} & \sigma_{u} \\
\{u\} & x=\sigma_{u} & \sigma_{s}
\end{array}\right.
$$

$\sim G_{s(x)}$ is either $\{1\},\{1,5\},\{1, t\}$ or $\{1,4\}$

$$
\begin{array}{r}
x=\sigma_{s} \leadsto\left(g, \sigma_{s}\right) \sim\left(a, \sigma_{s}\right) \Leftrightarrow g^{-1} g^{\prime} \in\{1, s\} \\
\left(\Rightarrow g=g^{\prime} \text { or } g^{\prime}=g s\right.
\end{array}
$$

WW
Construction of the Space \mathcal{U}
here, $\left[g, \sigma_{2}\right]=\left\{\left(g, \sigma_{s}\right),\left(g s, \sigma_{s}\right)\right\}$

$$
x \notin\left\{\sigma_{s}, \sigma_{\tau}, \sigma_{u}\right\} \Rightarrow[g, x]=\{(g, x)\}
$$

\leadsto glue $g X$ and $g s X$ along σ_{s}

other extanple: $G=D_{6}, X=2$ - ingax

$$
x_{s}=\Delta_{s}
$$

cod. 7 faces

Important remarks

- Suppose, $X=$ Cone $\left\{\sigma_{s}: s \in S\right\}, X_{s}=\sigma_{s}$, then, the space $\mathcal{U}(W, X)$ is the Caley graph of (W, S) up to subdivision
- We denote the image of $(g B, x)$ in $\mathcal{U}(G, X)$ by $[g, x]$
- For $g \in G, g X$ denotes the image of $g B \times X$ in $\mathcal{U}(G, X)$ and is called a chamber
- G acts on $G / B \times X$ via $g(h B, x)=(g h B, x)$
- This G-action on $G / B \times X$ preserves the equivalence relation, hence, it descends to an action on $\mathcal{U}(G, X)$
- The orbit space of the G-action on $G / B \times X$ is X
- $\mathcal{U}(G, X) / G$ and X are homeomorphic
set of dab bes is identified with $G_{1 B}^{\text {Constr }}$ orbit prof (prog onto the $Z^{\text {rd }}$ factor) descend tor prof $p: U(G, x) \rightarrow x$

Since $u(G, x) \xrightarrow{p} x \xrightarrow{i} U(G, x)$
p is a retraction $(p \circ \bar{c})=$ id
p is an open mapping (evecane of the def. of \sim, an open rat in U is open in the 2^{n-1} coordidel) ρ induces a cont bize $\bar{p}: U(G, X) / \sigma \rightarrow X$ (wee the orbit relation is cooker the A)

$$
\begin{aligned}
& p \text { ope } \Rightarrow \tilde{p} \text { open } \\
& \Rightarrow u(6, x) / \sigma \cong x
\end{aligned}
$$

Definition (Fundamental domain)

- Suppose, a group G acts on a space Y, A closed subset $C \subseteq Y$ is called a fundamental domain for G on Y if each G-orbit intersects C and if for each x in the interior of C, $G x \cap C=\{x\}$
- C is called a strict fundamental domain if it intersects each G-orbit in exactly one point.
- X is a strict fundamental domain for G on $\mathcal{U}(G, X)$

1. It's clear, that each G-orbit $G y$ interact X sine $u=6 \times \times / \sim$
2. Each G-orbit $G y$ intersects X in at no ut one point:
reveler: $X \underset{\longrightarrow}{i} U(G, X) / G \xrightarrow{\tilde{p}} X$ supper $\exists x, x^{\prime} \in X: x \neq x^{\prime}, x, x^{2} \in G_{y}$
the $x \mapsto G Y \mapsto y$
$x^{\prime} \rightarrow$ by $\rightarrow y$
since $i o p=i d \Rightarrow x=x^{\prime}$
$\Rightarrow X$ is strict perderental domain

Lemma
$\mathcal{U}(G, X)$ is connected if

1. The family of subgroups $\left(G_{s}\right)_{s \in S}$ generates G
2. X is connected
3. $X_{s} \neq \emptyset$ for all $s \in S$

Conversely, if $\mathcal{U}(G, X)$ is connected, then 1. and 2. hold
" \Rightarrow " $U(G, X)$ is endowed with the quotient topology
a mbret of $U(G, X)$ is open eff it's intersection with each chamber is open (cloned)
X corrected \Rightarrow any moet, which is open and closed is a mia of chasers $A X$
wW
for rave $A \subset G / B$
suppose $A \subset G / B$ voverpty proper set, sit. $A X$ open and cored in $u(G, X)$. Let H be the were wage of A in G.
If $x_{1} \neq \phi, x \in X_{S}$, the for $g_{5} \in G_{S}$, hB GA any open naighborbovel of $\left[Q_{s}, x\right]$ mount intersect $h X$ and $\log _{5} X$.
$\Rightarrow H G_{s} \subset H \Rightarrow H$ is the subgroup \hat{G} of 6 generated by the $G_{S}, s \in S$
ww
Terce, if $\hat{G}=G \Rightarrow A X=\tilde{U}(G, X)$
\therefore i., U (G, X) is connected
"E" Emppore $U(G, X)$ is conceited. Sire the orbit map is a retraction, X is connected (here 2. holds)
\widehat{O} contains all isotropy subgroups $G_{S(x)}$ $x \in X$, it follows that $G X$ is open in $U(G, X)$, Cleanly, $\widehat{G X}$ is clorened Hence, $G=6$ (her ce 1. hold)

Definition (Properly discontinuous action)

Suppose G is discrete. A G-action on a Hausdorff space Y is called properly discontinuous, if

1. Y / G is Hausdorff
2. For each $y \in Y, G_{y}:=\{g \in G: g y=y\}$ is finite
3. Each $y \in Y$ has a neighborhood U_{y}, s.t. $g U_{y} \cap U_{y}=\emptyset$ for all $g \in G_{y}$

Definition

A mirror structure on X is called G - finite, if $X_{T}=\emptyset$ for any $T \subseteq S$ such that G_{T} / B is infinite

Lemma
Suppose G is discrete. The G-action on $\mathcal{U}(G, X)$ is properly discontinuous if and only if

1. X is Hausdorff
2. The mirror structure is G-finite
" \Rightarrow " X Jeumdorff and the fact thor the minor struative is G-pinite follows inediately from the aforementioned def.
"C-' IA infficen to establish that each $[1, x] \in U(G, x)$ (for ar $x \in X$ avbitiany) has a $G_{s(x)}$-stably neigubvolood. u_{κ} s.t. $g u_{x} \cap u_{x}=\phi \quad \forall g \in G \backslash G_{S(x)}$: Let $v_{x}:=x \vee \bigcup_{S \nsubseteq S(x)} x_{s}$. and $U_{x}=G_{S(x)} V_{x}$
U_{x} is an ops in $G_{S(x)}$-stable nerghiborbrod of $[1, x]-U(G, X)$ and clearly $g U_{x} \cap U_{x}=\phi \quad \forall g \in G \backslash G_{s(x)}$

- Suppose (W, S) is a pre-Coxeter system
- This gives us a family of subgroups if for each $s \in S$, we define W_{s} as the subgroup generated by s
- For any subset A of W / B, define

$$
A X:=\bigcup_{a \in A} a X
$$

Lemma

Suppose, X is connected (resp. path connected) and $X_{s} \neq \emptyset$ for each $s \in S$. Given a subset $A \subseteq W, A X$ is connected (resp. path connected)

WWU
The Case of a Pre-Coxeter System
We proof the statenet for X corected:
"H' a subret of $4 \times$ is both open and clared hos the for $B X$ for we $B \subset A$ (as reen beferc)
Let B beaproper nomerpty subut of A s.t.
$B X$ oper and clored in $A X$. Set $B^{c}=A \mid B$.
Suppore A conected. wlog, suppore $b \in B$ and $b^{\prime} \in B^{C}$ are coneatl by an edge (with label s) in the Caley graph. The, $b X_{S}=b^{?} X_{S}$ his is $B X \cap B^{C} X$.
Liee $X_{s} \neq 6, B X$ and $B^{c} X$ canot be dinjont $\Rightarrow A X$ is comated
"E" Suprere $A X$ in conected, the argurent above shows that A canot be partiond inte digoint mbers B and B^{c} s.t. no eleved of B car be coneded by an edep to an elenat of B^{c} by an edge.
$\Rightarrow A$ in corested

Corollary

$\mathcal{U}(W, x)$ is connected (resp. path connected) if the following two conditions hold:

1. X is connected (resp. path connected)
2. $X_{s} \neq \emptyset$ for each $s \in S$

- This is just the special case $A=W$ of the aforementioned lemma

Example

If (W, S) is only required to be a pre-Coxeter system, then it's not true, that 2 . is necessary for $\mathcal{U}(W, x)$ to be path connected. Take $W=C_{2} \times C_{2}$ and $S=\{s, t, s t\}$ the set of it's nontrivial elements

Lemma (Vinberg)
Suppose Y is a space and let W be a group acting on Y. Let Y^{s} denote the fixed pint set of s on Y. Let $f: X \rightarrow Y$ be continuous, s.t. $f\left(X_{s}\right) \subseteq Y^{s}$. Then, there exists an unique extension of f to a W-equivariant continuous map $\hat{f}: \mathcal{U} \rightarrow Y$ given by

$$
\hat{f}([w, x])=w f(x)
$$

Continuity of \hat{f} : Giver $V \leq Y$ open
$\hat{f}^{-1}(V)$ open \Leftrightarrow it's preinagell in $W \times X$ open (by quotient topology). Sire W has the discrete top., $u=\{\omega\} \times A$ for $A \subseteq X$ open. To show, that U is over, find open neighberberd for (w, x) in 4 \Leftrightarrow find open neigherorkood of x is $t^{-2}\left(w^{-7} V\right)$ (clear by cont. of f)

Definition

The Action of a discrete group \widehat{W} on a space Y is a reflection group if there is a Coxeter system (W, S) and a subspace $X \subseteq Y$ s.t.

1. $\widehat{W}=W$
2. If a mirror structure on X is defined by setting X_{s} equal to the intersection of X with the fixed set of s on Y, then the $\operatorname{map} \mathcal{U}(W, X) \rightarrow Y$, induced by the inclusion of x in Y is a homeomorphism

Example (The Coxeter complex)

- Let Δ be a simplex of dimension $\operatorname{Card}(S)-1$ and that the faces of codimension $1\left\{\Delta_{s}\right\}_{s \in S}$ are indexed by the Elements of S
- $\left\{\Delta_{s}\right\}_{s \in S}$ is a mirror structure on Δ
- $\mathcal{U}(W, \Delta)$ is a simplicial complex, called the Coxeter complex
- We will see, that, if W is finite, $\mathcal{U}(W, \Delta)$ is homeomorphic to a sphere and if W is infinite, $\mathcal{U}(W, \Delta)$ is contractible

