How to generalize reflection groups Multiple ways to define Coxeter groups

Leon Pernak

Westfälische Wilhelms-Universität Münster

30.04.2021

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
•00	0000	000		

Reflections and their generalizations

• Reflection groups: groups generated by reflections along hyperplanes in finite dimensional Euclidean space.

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
•00	0000	000		

Reflections and their generalizations

• Reflection groups: groups generated by reflections along hyperplanes in finite dimensional Euclidean space.

• Example: Dihedral groups (groups generated by two reflections in the Euclidean plane).

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
•00	0000	000		

Reflections and their generalizations

• Reflection groups: groups generated by reflections along hyperplanes in finite dimensional Euclidean space.

- Example: Dihedral groups (groups generated by two reflections in the Euclidean plane).
- Example: Symmetry groups of platonic solids.

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
000	0 000 000	0 000 00		

H.S.M. Coxeter

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Figure: Wikipedia

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
000	o 000 000	o 000 00		

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Overview

- Definition
- Examples
- Properties
- Prereflection Systems
 - Definition
 - Geometric perspective
 - Preparation of strengthened conditions
- 3 Reflection systems
- 4 Coxeter Systems, Diagrams and Outlook

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	000 000	0 000 00		
Definition				

Definition of Dihedral Groups

Definition

A group generated by two **involutions**, i.e. elements of order two, is called a **dihedral group**.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 •••• ••••	0 000 00		

Examples

(All) The dihedral groups

Finite dihedral groups

Given $m \ge 2$, let $L, L' \subseteq \mathbb{R}^2$ be two lines through the origin in the Euclidean plane with angle $\frac{2\pi}{m}$ between them. Furthermore, let r_L , $r_{L'} : \mathbb{R}^2 \to \mathbb{R}^2$ denote the reflections along those lines. We define $D_m := \langle r_L, r_{L'} \rangle \le O(2) \le Isom(\mathbb{R}^2)$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 •••• ••••	o 000 00		

Examples

(All) The dihedral groups

Finite dihedral groups

Given $m \ge 2$, let $L, L' \subseteq \mathbb{R}^2$ be two lines through the origin in the Euclidean plane with angle $\frac{2\pi}{m}$ between them. Furthermore, let r_L , $r_{L'} : \mathbb{R}^2 \to \mathbb{R}^2$ denote the reflections along those lines. We define $D_m := \langle r_L, r_{L'} \rangle \le O(2) \le Isom(\mathbb{R}^2)$.

Infinite dihedral group

Let $r_0, r_1 : \mathbb{R} \to \mathbb{R}$ be the reflections about 0, 1 resp. We define $D_{\infty} := < r_0, r_1 > \le Isom(\mathbb{R}).$

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 000	0 000 00		
E I				

The dihedral groups as semidirect products

Reminder: Semi-direct product

Let *G*, *H* be groups and $\phi : G \times H \to H$ an action of *G* on *H*. The set $H \times G$ carries a group structure via $(h_1, g_1) \cdot (h_2, g_2) := (h_1\phi(g_1, h_2), g_1g_2)$, called the **semi-direct product** and denoted by $H \rtimes_{\phi} G$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

General Ideas and Goals	Dihedral Groups O	Prereflection Systems 0	Reflection systems	Coxeter Systems, Diagrams and Outlook
	000 000	000 00		

The dihedral groups as semidirect products

Reminder: Semi-direct product

Let *G*, *H* be groups and $\phi : G \times H \to H$ an action of *G* on *H*. The set $H \times G$ carries a group structure via $(h_1, g_1) \cdot (h_2, g_2) := (h_1\phi(g_1, h_2), g_1g_2)$, called the **semi-direct product** and denoted by $H \rtimes_{\phi} G$.

Construction via semi-direct product

Denote by C_m the cyclic group of order m (including ∞). Write $C_2 = \{\pm 1\}$. Then C_2 acts on C_m via $\epsilon g = g^{\epsilon}$. Then $C_m \rtimes C_2$ is generated by (0, -1), (d, -1) where 0 is the neutral and d the generating element of C_m .

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 00● 000	0 000 00		

Finite presentations of dihedral groups

Reminder: Group presentation

Let *S* be any set and *R* be a set of words over $S \cup S^{-1}$. We denote by $\langle S|R \rangle$ the quotient of the free group over *S* by its normal subgroup generated by *R*.

- 日本 本語 本 本 田 本 王 本 田 本

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 000	0 000 00		

Finite presentations of dihedral groups

Reminder: Group presentation

Let S be any set and R be a set of words over $S \cup S^{-1}$. We denote by $\langle S|R \rangle$ the quotient of the free group over S by its normal subgroup generated by R.

Construction via (finite) presentations

The groups $\langle s, t | s^2, t^2, (st)^m \rangle$ for m > 1 and $\langle s, t | s^2, t^2 \rangle$ are clearly generated by the involutions s, t.

・ロ・・ 日・ ・ 日・ ・ 日・ ・ つくつ

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 •00	0 000 00		

Equivalence of the definitions

Lemma

Let *W* be a dihedral group generated by the involutions *s*, *t*. Then P := < st > is normal in *W*, $W = P \rtimes C_2$ and [W : P] = 2.

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 •00	0 000 00		

Properties

Equivalence of the definitions

Lemma

Let *W* be a dihedral group generated by the involutions *s*, *t*. Then P := < st > is normal in *W*, $W = P \rtimes C_2$ and [W : P] = 2.

Corollary

The following are isomorphisms:

$$egin{aligned} D_m &
ightarrow C_m
times C_2 &
ightarrow < s, t | s^2, t^2, (st)^m > \ r_L, r_{L'} &
ightarrow (0, -1), (d, -1) &
ightarrow s, t \end{aligned}$$

・ロト・四ト・モート ヨー うへの

General Ideas and Goals 000	Dihedral Groups ○ ○ ○ ○ ○ ○	Prereflection Systems 0 000 00	Reflection systems	Coxeter Systems, Diagrams and Outlook 00000
Properties				
Proof				

• Put *p* = *st*, < *s* >= *C*₂

General Ideas and Goals 000	Dihedral Groups ○ ○ ○ ○ ○ ○ ○	Prereflection Systems 0 000 00	Reflection systems 00000	Coxeter Systems, Diagrams and Outlook 00000
Properties				

Proof

• Put
$$p = st$$
, $\langle s \rangle = C_2$
• $sps^{-1} = ssts = ts = p^{-1}$,
 $tpt^{-1} = tstt = ts = p^{-1}$
 $\Rightarrow P = \langle p \rangle$ normal.

General Ideas and Goals 000	Dihedral Groups ○ ○ ○ ○ ○ ○ ○	Prereflection Systems 0 000 00	Reflection systems 00000	Coxeter Systems, Diagrams and Outlook 00000
Properties				

Proof

• Put
$$p = st$$
, $\langle s \rangle = C_2$
• $sps^{-1} = ssts = ts = p^{-1}$,
 $tpt^{-1} = tstt = ts = p^{-1}$,
 $\Rightarrow P = \langle p \rangle$ normal.

•
$$t = sp$$
, so $W = C_2 P$.

General Ideas and Goals 000	Dihedral Groups ○ ○ ○ ○ ○ ○	Prereflection Systems 0 000 00	Reflection systems	Coxeter Systems, Diagrams and Outlook 00000
Properties				
-				

Proof

$$tpt^{-1} = tstt = ts = p^{-1}$$

 $\Rightarrow P = \langle p \rangle$ normal.

•
$$t = sp$$
, so $W = C_2 P$.

The relation sp = t = p⁻¹s allows swapping s and p^k around, so every w ∈ W can uniquely we written as s^mpⁿ.
 ⇒ W = P ⋊ C₂.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

General Ideas and Goals 000	Dihedral Groups ○ ○ ○ ○ ○ ○	Prereflection Systems 0 000 00	Reflection systems	Coxeter Systems, Diagrams and Outlook 00000
Properties				

• Put p = st, $\langle s \rangle = C_2$ • $sps^{-1} = ssts = ts = p^{-1}$, $tpt^{-1} = tstt = ts = p^{-1}$ $\Rightarrow P = \langle p \rangle$ normal.

Proot

•
$$t = sp$$
, so $W = C_2 P$.

The relation sp = t = p⁻¹s allows swapping s and p^k around, so every w ∈ W can uniquely we written as s^mpⁿ.
 ⇒ W = P ⋊ C₂.

• $W = P \cup sP \Rightarrow [W : P] \le 2$. Suppose [W : P] = 1, i.e. W = P.

General Ideas and Goals 000	Dihedral Groups ○ ○ ○ ○ ○ ○	Prereflection Systems 0 000 00	Reflection systems	Coxeter Systems, Diagrams and Outlook 00000
Properties				
-				

• Put p = st, $\langle s \rangle = C_2$ • $sps^{-1} = ssts = ts = p^{-1}$, $tpt^{-1} = tstt = ts = p^{-1}$ $\Rightarrow P = \langle p \rangle$ normal.

Proot

•
$$t = sp$$
, so $W = C_2 P$.

The relation sp = t = p⁻¹s allows swapping s and p^k around, so every w ∈ W can uniquely we written as s^mpⁿ.
 ⇒ W = P ⋊ C₂.

W = *P* ∪ *sP* ⇒ [*W* : *P*] ≤ 2.
 Suppose [*W* : *P*] = 1, i.e. *W* = *P*.

• \Rightarrow W is abelian.

General Ideas and Goals 000	Dihedral Groups ○ ○ ○ ○ ○ ○	Prereflection Systems 0 000 00	Reflection systems	Coxeter Systems, Diagrams and Outlook 00000
Properties				
-				

• Put p = st, $\langle s \rangle = C_2$ • $sps^{-1} = ssts = ts = p^{-1}$, $tpt^{-1} = tstt = ts = p^{-1}$ $\Rightarrow P = \langle p \rangle$ normal.

Proot

•
$$t = sp$$
, so $W = C_2 P$.

The relation sp = t = p⁻¹s allows swapping s and p^k around, so every w ∈ W can uniquely we written as s^mpⁿ.
 ⇒ W = P ⋊ C₂.

W = *P* ∪ *sP* ⇒ [*W* : *P*] ≤ 2.
 Suppose [*W* : *P*] = 1, i.e. *W* = *P*.

•
$$\Rightarrow$$
 W is abelian.
• \Rightarrow $p^2 = s^2 t^2 = 1 \Rightarrow |W| = 2$

General Ideas and Goals 000	Dihedral Groups ○ ○ ○ ○ ○ ○ ○	Prereflection Systems 0 000 00	Reflection systems	Coxeter Systems, Diagrams and Outlook 00000
Properties				

Proof

• Put
$$p = st$$
, $\langle s \rangle = C_2$
• $sps^{-1} = ssts = ts = p^{-1}$,
 $tpt^{-1} = tstt = ts = p^{-1}$
 $\Rightarrow P = \langle p \rangle$ normal.

•
$$t = sp$$
, so $W = C_2 P$.

- The relation sp = t = p⁻¹s allows swapping s and p^k around, so every w ∈ W can uniquely we written as s^mpⁿ.
 ⇒ W = P ⋊ C₂.
- *W* = *P* ∪ *sP* ⇒ [*W* : *P*] ≤ 2.
 Suppose [*W* : *P*] = 1, i.e. *W* = *P*.
 - \Rightarrow W is abelian.

•
$$\Rightarrow p^2 = s^2 t^2 = 1 \Rightarrow |W| = 2$$

• Contradiction to $1, s, t \in W$ being mutually distinct.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 000	0 000 00		
Properties				

Geometric properties of dihedral groups

000 0 0 0000 00000 00000 00000 00000 0000	General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
		0 000 000	• 000 00		

Definition

Pre-reflection Systems

Definition

Let W be a group, $R \subseteq W$ a generating set, Ω a connected simplicial graph which is acted on by W, and $v_0 \in Vert(\Omega)$ a base point. Then (R, Ω, v_0) is called a **prereflection system** for W, if

- All elements of R have order 2,
- **2** R is closed in W under conjugation,
- For each edge of Ω there is a unique element of R which flips it (i.e. swaps its endpoints).
- General Sector Sect

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 000	0 ●00 00		

Inspecting the graph

Observation

Let (R, Ω, v_0) be a prereflection system for a group W. Then W acts transitively on Ω .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 000	0 ●00 00		

Inspecting the graph

Observation

Let (R, Ω, v_0) be a prereflection system for a group W. Then W acts transitively on Ω .

Proof:

Ω is connected, so for any two vertices v, w there is a path (v, v₁, ..., v_n, w).

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 000	0 ●00 00		

Inspecting the graph

Observation

Let (R, Ω, v_0) be a prereflection system for a group W. Then W acts transitively on Ω .

Proof:

Ω is connected, so for any two vertices v, w there is a path (v, v₁, ..., v_n, w).

• Each edge $\{v_i, v_{i+1}\}$ is flipped by some $r_i \in R$.

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 000	0 ●00 00		

Inspecting the graph

Observation

Let (R, Ω, v_0) be a prereflection system for a group W. Then W acts transitively on Ω .

Proof:

Ω is connected, so for any two vertices v, w there is a path (v, v₁, ..., v_n, w).

• Each edge $\{v_i, v_{i+1}\}$ is flipped by some $r_i \in R$.

•
$$\Rightarrow$$
 $r_n...r_1v = w$

General Ideas and Goals 000	Dihedral Groups 0 000 000	Prereflection Systems 0 0 0 0 0	Reflection systems	Coxeter Systems, Diagrams and Outlook 00000
Geometric perspective				

Let (R, Ω, v_0) be a prereflection system for a group W

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
000	0 000 000		00000	00000
Geometric perspective				

Let (R, Ω, v_0) be a prereflection system for a group W

• We denote by $S = S(v_0) \subseteq R$ the set of prereflections that flip an edge originating at v_0 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 000			
Geometric perspective				

Let (R, Ω, v_0) be a prereflection system for a group W

• We denote by $S = S(v_0) \subseteq R$ the set of prereflections that flip an edge originating at v_0 .

• Then *R* is the set of conjugates of *S*.

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 000			
Coomotric porceostivo				

Let (R, Ω, v_0) be a prereflection system for a group W

- We denote by $S = S(v_0) \subseteq R$ the set of prereflections that flip an edge originating at v_0 .
- Then R is the set of conjugates of S.
- A given word $s = (s_1, ..., s_k)$ in S bijectively corresponds to a path $(v_0, ..., v_k)$ in Ω :

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 000			
Commentation and an entities				

Let (R, Ω, v_0) be a prereflection system for a group W

- We denote by $S = S(v_0) \subseteq R$ the set of prereflections that flip an edge originating at v_0 .
- Then *R* is the set of conjugates of *S*.
- A given word s = (s₁,...,s_k) in S bijectively corresponds to a path (v₀,...,v_k) in Ω:

• $w_i = s_1...s_i \in W$ "Path" to node $v_i = w_iv_0$.

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 000			
Commentation and an entities				

Let (R, Ω, v_0) be a prereflection system for a group W

- We denote by $S = S(v_0) \subseteq R$ the set of prereflections that flip an edge originating at v_0 .
- Then R is the set of conjugates of S.
- A given word s = (s₁,...,s_k) in S bijectively corresponds to a path (v₀,...,v_k) in Ω:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- $w_i = s_1 \dots s_i \in W$ "Path" to node $v_i = w_i v_0$.
- $r_i = w_{i-1}s_iw_{i-1}^{-1}$ prereflection flipping $\{v_{i-1}, v_i\}$

General Ideas and Goals	Dihedral Groups o ooo ooo	Prereflection Systems	Reflection systems 00000	Coxeter Systems, Diagrams and Outlook
C				

Let (R, Ω, v_0) be a prereflection system for a group W

- We denote by $S = S(v_0) \subseteq R$ the set of prereflections that flip an edge originating at v_0 .
- Then R is the set of conjugates of S.
- A given word $s = (s_1, ..., s_k)$ in S bijectively corresponds to a path $(v_0, ..., v_k)$ in Ω :

•
$$w_i = s_1...s_i \in W$$
 "Path" to node $v_i = w_i v_0$.
• $r_i = w_{i-1}s_i w_{i-1}^{-1}$ prereflection flipping $\{v_{i-1}, v_i\}$
• $\Phi(s) = (r_i - r_i)$ "Clobal perspective" on the path

- $\Phi(s) = (r_1, ..., r_k)$ "Global perspective" on the path.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで
General Ideas and Goals	Dihedral Groups o ooo ooo	Prereflection Systems	Reflection systems 00000	Coxeter Systems, Diagrams and Outlook
C				

Let (R, Ω, v_0) be a prereflection system for a group W

- We denote by $S = S(v_0) \subseteq R$ the set of prereflections that flip an edge originating at v_0 .
- Then R is the set of conjugates of S.
- A given word s = (s₁,...,s_k) in S bijectively corresponds to a path (v₀,...,v_k) in Ω:

$$\begin{array}{ll} w_i = s_1 \dots s_i \in W & \text{"Path" to node } v_i = w_i v_0. \\ r_i = w_{i-1} s_i w_{i-1}^{-1} & \text{prereflection flipping } \{v_{i-1}, v_i\} \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• S generates W.

• $\Phi(s) = (r_1, ..., r_k)$

General Ideas and Goals	Dihedral Groups o ooo ooo	Prereflection Systems	Reflection systems 00000	Coxeter Systems, Diagrams and Outlook
C				

Let (R, Ω, v_0) be a prereflection system for a group W

- We denote by $S = S(v_0) \subset R$ the set of prereflections that flip an edge originating at v_0 .
- Then R is the set of conjugates of S.
- A given word $s = (s_1, ..., s_k)$ in S bijectively corresponds to a path $(v_0, ..., v_k)$ in Ω :

•
$$w_i = s_1...s_i \in W$$
 "Path" to node $v_i = w_i v_0$.

•
$$r_i = w_{i-1}s_iw_{i-1}^{-1}$$
 prereflection flipping $\{v_{i-1}, e_i, e_i\}$
• $\Phi(s) = (r_1, ..., r_k)$ "Global perspective" on the second s

 V_i

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• S generates W.

• $r_i =$

• R generates W, so we proof $R \subseteq S > .$

General Ideas and Goals	Dihedral Groups o ooo ooo	Prereflection Systems	Reflection systems 00000	Coxeter Systems, Diagrams and Outlook
C				

Let (R, Ω, v_0) be a prereflection system for a group W

- We denote by $S = S(v_0) \subseteq R$ the set of prereflections that flip an edge originating at v_0 .
- Then *R* is the set of conjugates of *S*.
- A given word s = (s₁,...,s_k) in S bijectively corresponds to a path (v₀,...,v_k) in Ω:
 - $w_i = s_1...s_i \in W$ "Path" to node $v_i = w_i v_0$.

$$r_i = w_{i-1}s_iw_{i-1}^{-1}$$
 prereflection flipping $\{v_{i-1}, v_i\}$

•
$$\Phi(s) = (r_1, ..., r_k)$$
 "

"Global perspective" on the path.

• S generates W.

- *R* generates *W*, so we proof $R \subseteq \langle S \rangle$.
- Let $r \in R$ and e be an edge flipped by r.

General Ideas and Goals	Dihedral Groups 0 000 000	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
Commentation and an anti-				

Let (R, Ω, v_0) be a prereflection system for a group W

- We denote by $S = S(v_0) \subseteq R$ the set of prereflections that flip an edge originating at v_0 .
- Then *R* is the set of conjugates of *S*.
- A given word $s = (s_1, ..., s_k)$ in S bijectively corresponds to a path $(v_0, ..., v_k)$ in Ω :
 - $w_i = s_1...s_i \in W$ "Path" to node $v_i = w_i v_0$.

•
$$r_i = w_{i-1}s_iw_{i-1}^{-1}$$
 prereflection flipping $\{v_{i-1}, v_i\}$

the path.

$$s) = (r_1, ..., r_k)$$
 "Global perspective" on

• S generates W.

Φ(

- *R* generates *W*, so we proof $R \subseteq \langle S \rangle$.
- Let $r \in R$ and e be an edge flipped by r.
- Choose an edge path from v_0 with last edge e.

General Ideas and Goals	Dihedral Groups 0 000 000	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
Commentation and an anti-				

Let (R, Ω, v_0) be a prereflection system for a group W

- We denote by $S = S(v_0) \subseteq R$ the set of prereflections that flip an edge originating at v_0 .
- Then *R* is the set of conjugates of *S*.
- A given word s = (s₁,...,s_k) in S bijectively corresponds to a path (v₀,...,v_k) in Ω:
 - $w_i = s_1...s_i \in W$ "Path" to node $v_i = w_i v_0$.

•
$$r_i = w_{i-1} s_i w_{i-1}^{-1}$$
 prereflection flipping $\{v_{i-1}, v_i\}$

•
$$\Phi(s) = (r_1, ..., r_k)$$
 "Global perspective" on the path.

• S generates W.

- *R* generates *W*, so we proof $R \subseteq \langle S \rangle$.
- Let $r \in R$ and e be an edge flipped by r.
- Choose an edge path from v_0 with last edge e.
- Let $s = (s_1, ..., s_k)$ be the corresponding word with $\Phi(s) = (r_1, ..., r_k)$

General Ideas and Goals	Dihedral Groups o ooo ooo	Prereflection Systems	Reflection systems 00000	Coxeter Systems, Diagrams and Outlook

Let (R, Ω, v_0) be a prereflection system for a group W

- We denote by $S = S(v_0) \subseteq R$ the set of prereflections that flip an edge originating at v_0 .
- Then *R* is the set of conjugates of *S*.
- A given word s = (s₁,...,s_k) in S bijectively corresponds to a path (v₀,...,v_k) in Ω:
 - $w_i = s_1...s_i \in W$ "Path" to node $v_i = w_i v_0$.

$$v_i = w_{i-1} s_i w_{i-1}^{-1}$$
 prereflection flipping $\{v_{i-1}, v_i\}$

$$\Phi(s) = (r_1, ..., r_k)$$
 "Global perspective" on the path.

• S generates W.

a (

- *R* generates *W*, so we proof $R \subseteq \langle S \rangle$.
- Let $r \in R$ and e be an edge flipped by r.
- Choose an edge path from v_0 with last edge e.
- Let $s = (s_1, ..., s_k)$ be the corresponding word with $\Phi(s) = (r_1, ..., r_k)$
- $r = r_k = (s_1 \dots s_{k-1}) s_k (s_1 \dots s_k)^{-1} \Rightarrow r \in S_k$

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 000	0 000 00		

Deletion property

Lemma

Let (R, Ω, v_0) be a prereflection system for a group W and $S = S(v_0)$. If $s = (s_0, ..., s_k)$ is a word over S and $r_i = r_j$ for some i < j where $\Phi(s) = (r_1, ..., r_k)$, then $s_1...s_k = s_1...\widehat{s_j}...s_j...s_k$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 000	0 000 00		

Deletion property

Lemma

Let (R, Ω, v_0) be a prereflection system for a group W and $S = S(v_0)$. If $s = (s_0, ..., s_k)$ is a word over S and $r_i = r_j$ for some i < j where $\Phi(s) = (r_1, ..., r_k)$, then $s_1...s_k = s_1...\widehat{s_j}...s_j...s_k$.

Proof

• Recall $r_i = s_1...s_{i-1}s_is_{i-1}...s_1$ and $r_j = s_1...s_{j-1}s_js_{j-1}...s_1$.

•
$$r_i = r_j \Rightarrow s_1...s_{i-1}s_is_{i-1}...s_1 = s_1...s_{j-1}s_js_{j-1}...s_1$$

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 000	0 000 00		

Deletion property

Lemma

Let (R, Ω, v_0) be a prereflection system for a group W and $S = S(v_0)$. If $s = (s_0, ..., s_k)$ is a word over S and $r_i = r_j$ for some i < j where $\Phi(s) = (r_1, ..., r_k)$, then $s_1...s_k = s_1...\widehat{s_j}...s_j...s_k$.

Proof

• Recall $r_i = s_1...s_{i-1}s_is_{i-1}...s_1$ and $r_j = s_1...s_{j-1}s_js_{j-1}...s_1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- $r_i = r_j \Rightarrow s_1...s_{i-1}s_is_{i-1}...s_1 = s_1...s_{j-1}s_js_{j-1}...s_1$
- Multiply from right with $s_1...s_j$, from left with $s_i...s_1$.

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 000	0 000 00		

Deletion property

Lemma

Let (R, Ω, v_0) be a prereflection system for a group W and $S = S(v_0)$. If $s = (s_0, ..., s_k)$ is a word over S and $r_i = r_j$ for some i < j where $\Phi(s) = (r_1, ..., r_k)$, then $s_1...s_k = s_1...\widehat{s_j}...s_j...s_k$.

Proof

• Recall $r_i = s_1...s_{i-1}s_is_{i-1}...s_1$ and $r_j = s_1...s_{j-1}s_js_{j-1}...s_1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- $r_i = r_j \Rightarrow s_1...s_{i-1}s_is_{i-1}...s_1 = s_1...s_{j-1}s_js_{j-1}...s_1$
- Multiply from right with $s_1...s_j$, from left with $s_i...s_1$.
- \Rightarrow $s_i...s_j = s_{i+1}...s_{j-1}.$

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 000	0 000 00		

Deletion property

Lemma

Let (R, Ω, v_0) be a prereflection system for a group W and $S = S(v_0)$. If $s = (s_0, ..., s_k)$ is a word over S and $r_i = r_j$ for some i < j where $\Phi(s) = (r_1, ..., r_k)$, then $s_1...s_k = s_1...\widehat{s_j}...s_j...s_k$.

Proof

• Recall $r_i = s_1...s_{i-1}s_is_{i-1}...s_1$ and $r_j = s_1...s_{j-1}s_js_{j-1}...s_1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- $r_i = r_j \Rightarrow s_1...s_{i-1}s_is_{i-1}...s_1 = s_1...s_{j-1}s_js_{j-1}...s_1$
- Multiply from right with $s_1...s_j$, from left with $s_i...s_1$.

•
$$\Rightarrow$$
 $s_i...s_j = s_{i+1}...s_{j-1}$.

• \Rightarrow Replace subword $(s_i, ..., s_j)$ by $(s_{i+1}, ..., s_{j-1})$.

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 000	0 000 ● 0		

Walls

Definition

For a given prereflection system (R, Ω, v_0) and $r \in R$ the set Ω^r of midpoints of edges that are flipped by r is called the **wall** corresponding to r.

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 000	0 000 ● 0		

Walls

Definition

For a given prereflection system (R, Ω, v_0) and $r \in R$ the set Ω^r of midpoints of edges that are flipped by r is called the **wall** corresponding to r.

Remark

An edge path corresponding to a word $s = (s_1, ..., s_k)$ crosses Ω^r if and only if r occurs in $\Phi(s)$.

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 000	0 000 ● 0		

Walls

Definition

For a given prereflection system (R, Ω, v_0) and $r \in R$ the set Ω^r of midpoints of edges that are flipped by r is called the **wall** corresponding to r.

Remark

An edge path corresponding to a word $s = (s_1, ..., s_k)$ crosses Ω^r if and only if r occurs in $\Phi(s)$.

Lemma

For each $r \in R$, $\Omega \setminus \Omega^r$ has either one or two connected components. If it has two, they are interchanged by r.

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 000	o 000 0●		

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Preparation of strengthened conditions

The proof that walls separate the world

Proof

• W.I.o.g we can assume $r = s \in S$.

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 000	0 000 0		

The proof that walls separate the world

Proof

- W.I.o.g we can assume $r = s \in S$.
 - *R* are the conjugates of *S*, so write $r = wsw^{-1}$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 000	0 000 0		

The proof that walls separate the world

Proof

- W.I.o.g we can assume $r = s \in S$.
 - *R* are the conjugates of *S*, so write $r = wsw^{-1}$.

•
$$w\Omega^s = \Omega^{wsw^{-1}} = \Omega$$

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 000	o 000 0●		

The proof that walls separate the world

Proof

- W.I.o.g we can assume $r = s \in S$.
 - *R* are the conjugates of *S*, so write $r = wsw^{-1}$.

•
$$w\Omega^s = \Omega^{wsw^{-1}} = \Omega$$

• $\Rightarrow w \text{ maps } \Omega \setminus \Omega^r$ homeomorphically to $\Omega \setminus \Omega^s$.

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 000	0 000 0		

The proof that walls separate the world

Proof

- W.I.o.g we can assume $r = s \in S$.
 - *R* are the conjugates of *S*, so write $r = wsw^{-1}$.

•
$$w\Omega^s = \Omega^{wsw^{-1}} = \Omega$$

- $\Rightarrow w \text{ maps } \Omega \setminus \Omega^r$ homeomorphically to $\Omega \setminus \Omega^s$.
- For a vertex v there is either a path in $\Omega \setminus \Omega^s$ to v_0 or to sv_0 .

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 000	0 000 0		

The proof that walls separate the world

Proof

- W.l.o.g we can assume $r = s \in S$.
 - *R* are the conjugates of *S*, so write *r* = *wsw*⁻¹. *w*Ω^s = Ω^{wsw⁻¹} = Ω^r

 - $\Rightarrow w \text{ maps } \Omega \setminus \Omega^r$ homeomorphically to $\Omega \setminus \Omega^s$.
- For a vertex v there is either a path in $\Omega \setminus \Omega^s$ to v_0 or to sv_0 .
 - Let $t = (s_1, ..., s_k)$ be the word corresponding to a minimal edge path in Ω from v_0 to v.

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 000	0 000 0		

The proof that walls separate the world

Proof

- W.l.o.g we can assume $r = s \in S$.
 - *R* are the conjugates of *S*, so write *r* = *wsw*⁻¹. *w*Ω^s = Ω^{wsw⁻¹} = Ω^r

 - $\Rightarrow w \text{ maps } \Omega \setminus \Omega^r$ homeomorphically to $\Omega \setminus \Omega^s$.
- For a vertex v there is either a path in $\Omega \setminus \Omega^s$ to v_0 or to sv_0 .
 - Let $t = (s_1, ..., s_k)$ be the word corresponding to a minimal edge path in Ω from v_0 to v.

A D N A 目 N A E N A E N A B N A C N

• Case 1: s does not occur in $\Phi(t) = (r_1, ..., r_k)$

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 000	0 000 0		

The proof that walls separate the world

Proof

- W.l.o.g we can assume $r = s \in S$.
 - *R* are the conjugates of *S*, so write *r* = *wsw*⁻¹. *w*Ω^s = Ω^{wsw⁻¹} = Ω^r

 - $\Rightarrow w \text{ maps } \Omega \setminus \Omega^r$ homeomorphically to $\Omega \setminus \Omega^s$.
- For a vertex v there is either a path in $\Omega \setminus \Omega^s$ to v_0 or to sv_0 .
 - Let $t = (s_1, ..., s_k)$ be the word corresponding to a minimal edge path in Ω from v_0 to v.

A D N A 目 N A E N A E N A B N A C N

- Case 1: s does not occur in $\Phi(t) = (r_1, ..., r_k)$
- \Rightarrow t does not cross $\Omega^s \Rightarrow$ Done.

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 000	0 000 0		

The proof that walls separate the world

Proof

- W.l.o.g we can assume $r = s \in S$.
 - *R* are the conjugates of *S*, so write *r* = *wsw*⁻¹. *w*Ω^s = Ω^{wsw⁻¹} = Ω^r

 - $\Rightarrow w \text{ maps } \Omega \setminus \Omega^r$ homeomorphically to $\Omega \setminus \Omega^s$.
- For a vertex v there is either a path in $\Omega \setminus \Omega^s$ to v_0 or to sv_0 .
 - Let $t = (s_1, ..., s_k)$ be the word corresponding to a minimal edge path in Ω from v_0 to v.

A D N A 目 N A E N A E N A B N A C N

- Case 1: s does not occur in $\Phi(t) = (r_1, ..., r_k)$
- \Rightarrow t does not cross $\Omega^s \Rightarrow$ Done.
- Case 2: s occurs in $\Phi(t)$

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 000	0 000 0		

The proof that walls separate the world

Proof

- W.l.o.g we can assume $r = s \in S$.
 - *R* are the conjugates of *S*, so write *r* = *wsw*⁻¹. *w*Ω^s = Ω^{wsw⁻¹} = Ω^r

 - $\Rightarrow w \text{ maps } \Omega \setminus \Omega^r$ homeomorphically to $\Omega \setminus \Omega^s$.
- For a vertex v there is either a path in $\Omega \setminus \Omega^s$ to v_0 or to sv_0 .
 - Let $t = (s_1, ..., s_k)$ be the word corresponding to a minimal edge path in Ω from v_0 to v.
 - Case 1: s does not occur in $\Phi(t) = (r_1, ..., r_k)$
 - \Rightarrow t does not cross $\Omega^s \Rightarrow$ Done.
 - Case 2: s occurs in $\Phi(t)$
 - s occurs exactly once (deletion lemma yields 4 to t minimal)

A D N A 目 N A E N A E N A B N A C N

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 000	0 000 0		

The proof that walls separate the world

Proof

- W.I.o.g we can assume $r = s \in S$.
 - *R* are the conjugates of *S*, so write *r* = *wsw*⁻¹. *w*Ω^s = Ω^{wsw⁻¹} = Ω^r

 - $\Rightarrow w \text{ maps } \Omega \setminus \Omega^r$ homeomorphically to $\Omega \setminus \Omega^s$.
- For a vertex v there is either a path in $\Omega \setminus \Omega^s$ to v_0 or to sv_0 .
 - Let $t = (s_1, ..., s_k)$ be the word corresponding to a minimal edge path in Ω from v_0 to v.
 - Case 1: s does not occur in $\Phi(t) = (r_1, ..., r_k)$
 - \Rightarrow t does not cross $\Omega^s \Rightarrow$ Done.
 - Case 2: s occurs in $\Phi(t)$
 - s occurs exactly once (deletion lemma yields 4 to t minimal)
 - Consider $t' = (s, s_1, ..., s_k)$ which defines edge path sv_0 to v.

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 000	0 000 0		

The proof that walls separate the world

Proof

- W.l.o.g we can assume $r = s \in S$.
 - *R* are the conjugates of *S*, so write *r* = *wsw*⁻¹. *w*Ω^s = Ω^{wsw⁻¹} = Ω^r

 - $\Rightarrow w \text{ maps } \Omega \setminus \Omega^r$ homeomorphically to $\Omega \setminus \Omega^s$.
- For a vertex v there is either a path in $\Omega \setminus \Omega^s$ to v_0 or to sv_0 .
 - Let $t = (s_1, ..., s_k)$ be the word corresponding to a minimal edge path in Ω from v_0 to v.
 - Case 1: s does not occur in $\Phi(t) = (r_1, ..., r_k)$
 - \Rightarrow t does not cross $\Omega^s \Rightarrow$ Done.
 - Case 2: s occurs in $\Phi(t)$
 - s occurs exactly once (deletion lemma yields 4 to t minimal)
 - Consider $t' = (s, s_1, ..., s_k)$ which defines edge path sv_0 to v.
 - $\Phi(t') = (s, sr_1s, ..., sr_ks)$

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 000	0 000 0		

The proof that walls separate the world

Proof

- W.l.o.g we can assume $r = s \in S$.
 - *R* are the conjugates of *S*, so write *r* = *wsw*⁻¹. *w*Ω^s = Ω^{wsw⁻¹} = Ω^r

 - $\Rightarrow w \text{ maps } \Omega \setminus \Omega^r$ homeomorphically to $\Omega \setminus \Omega^s$.

• For a vertex v there is either a path in $\Omega \setminus \Omega^s$ to v_0 or to sv_0 .

- Let $t = (s_1, ..., s_k)$ be the word corresponding to a minimal edge path in Ω from v_0 to v.
- Case 1: s does not occur in $\Phi(t) = (r_1, ..., r_k)$
- \Rightarrow t does not cross $\Omega^s \Rightarrow$ Done.
- Case 2: s occurs in $\Phi(t)$
- s occurs exactly once (deletion lemma yields 4 to t minimal)
- Consider $t' = (s, s_1, ..., s_k)$ which defines edge path sv_0 to v.
- $\Phi(t') = (s, sr_1s, ..., sr_ks)$
- \Rightarrow s occurs exactly twice in $\Phi(t')$.

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 000	0 000 0		

The proof that walls separate the world

Proof

- W.l.o.g we can assume $r = s \in S$.
 - *R* are the conjugates of *S*, so write *r* = *wsw*⁻¹. *w*Ω^s = Ω^{wsw⁻¹} = Ω^r

 - $\Rightarrow w \text{ maps } \Omega \setminus \Omega^r$ homeomorphically to $\Omega \setminus \Omega^s$.
- For a vertex v there is either a path in $\Omega \setminus \Omega^s$ to v_0 or to sv_0 .
 - Let $t = (s_1, ..., s_k)$ be the word corresponding to a minimal edge path in Ω from v_0 to v.
 - Case 1: s does not occur in $\Phi(t) = (r_1, ..., r_k)$
 - \Rightarrow t does not cross $\Omega^s \Rightarrow$ Done.
 - Case 2: s occurs in $\Phi(t)$
 - s occurs exactly once (deletion lemma yields 4 to t minimal)
 - Consider $t' = (s, s_1, ..., s_k)$ which defines edge path sv_0 to v.

Sac

- $\Phi(t') = (s, sr_1s, ..., sr_ks)$
- \Rightarrow s occurs exactly twice in $\Phi(t')$.
- Deletion lemma: path from v_0 to sv_0 not crossing Ω^s .

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	o 000 000	o 000 00	●0000	

Let (R, Ω, v_0) be a prereflection system for a group W. Then it is called a **reflection system**, if for each $s \in S(v_0)$ the graph $\Omega \setminus \Omega^s$ has two components. The elements of R are called **reflections** and the elements of S are called **fundamental reflections**.

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	o 000 000	0 000 00	● 0000	

Let (R, Ω, v_0) be a prereflection system for a group W. Then it is called a **reflection system**, if for each $s \in S(v_0)$ the graph $\Omega \setminus \Omega^s$ has two components. The elements of R are called **reflections** and the elements of S are called **fundamental reflections**.

Lemma

Suppose (R, Ω, v_0) is a reflection system for a group W. Then W acts freely on Ω .

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 000	o 000 00	0000	

Let (R, Ω, v_0) be a prereflection system for a group W. Then it is called a **reflection system**, if for each $s \in S(v_0)$ the graph $\Omega \setminus \Omega^s$ has two components. The elements of R are called **reflections** and the elements of S are called **fundamental reflections**.

Lemma

Suppose (R, Ω, v_0) is a reflection system for a group W. Then W acts freely on Ω .

Proof

• Suppose $wv_0 = v_0$ for some $w \neq 1$.

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 000	o 000 00	● 0000	

Let (R, Ω, v_0) be a prereflection system for a group W. Then it is called a **reflection system**, if for each $s \in S(v_0)$ the graph $\Omega \setminus \Omega^s$ has two components. The elements of R are called **reflections** and the elements of S are called **fundamental reflections**.

Lemma

Suppose (R, Ω, v_0) is a reflection system for a group W. Then W acts freely on Ω .

Proof

- Suppose $wv_0 = v_0$ for some $w \neq 1$.
- Write $w = s_0...s_k$ (minimal length) <-> Edge path $(v_0,...,v_0)$

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 000	o 000 00	● 0000	

Let (R, Ω, v_0) be a prereflection system for a group W. Then it is called a **reflection system**, if for each $s \in S(v_0)$ the graph $\Omega \setminus \Omega^s$ has two components. The elements of R are called **reflections** and the elements of S are called **fundamental reflections**.

Lemma

Suppose (R, Ω, v_0) is a reflection system for a group W. Then W acts freely on Ω .

Proof

- Suppose $wv_0 = v_0$ for some $w \neq 1$.
- Write $w = s_0...s_k$ (minimal length) <-> Edge path $(v_0,...,v_0)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Each wall Ω^{s_i} is crossed an even number of times.

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 000	o 000 00	● 0000	

Let (R, Ω, v_0) be a prereflection system for a group W. Then it is called a **reflection system**, if for each $s \in S(v_0)$ the graph $\Omega \setminus \Omega^s$ has two components. The elements of R are called **reflections** and the elements of S are called **fundamental reflections**.

Lemma

Suppose (R, Ω, v_0) is a reflection system for a group W. Then W acts freely on Ω .

Proof

- Suppose $wv_0 = v_0$ for some $w \neq 1$.
- Write $w = s_0...s_k$ (minimal length) <-> Edge path $(v_0,...,v_0)$
- Each wall Ω^{s_i} is crossed an even number of times.
- \Rightarrow Apply deletion lemma \Rightarrow \ddagger to minimal length!

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	o 000 000	0 000 00	0000	

Road to Coxeter Systems

Definition

A group W together with a generating set S of elements of order two is called a **pre-Coxeter system**.

(日) (四) (日) (日) (日)

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0	0	00000	
	000	000		

Combinatorial conditions for a pre-Coxeter systems (W, S)

(D) - Deletion

If $s = (s_1, ..., s_k)$ is a word in S with k > l(w(s)), then there are indices i < j so that the subword $s' = (s_1, ..., \hat{s_j}, ..., \hat{s_j}, ..., s_k)$ is also an expression for w(s).
General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 000	0 000 00	00000	

Combinatorial conditions for a pre-Coxeter systems (W, S)

(D) - Deletion

If $s = (s_1, ..., s_k)$ is a word in S with k > l(w(s)), then there are indices i < j so that the subword $s' = (s_1, ..., \hat{s_i}, ..., \hat{s_j}, ..., s_k)$ is also an expression for w(s).

(E) - Exchange

Given a reduced expression $s = (s_1, ..., s_k)$ for $w \in W$ and an element $s \in S$, either l(sw) = k + 1 or else there is an index *i* such that $w = ss_1...\widehat{s_i}...s_k$.

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 000	0 000 00	00000	

Combinatorial conditions for a pre-Coxeter systems (W, S)

(D) - Deletion

If $s = (s_1, ..., s_k)$ is a word in S with k > l(w(s)), then there are indices i < j so that the subword $s' = (s_1, ..., \hat{s_i}, ..., \hat{s_j}, ..., s_k)$ is also an expression for w(s).

(E) - Exchange

Given a reduced expression $s = (s_1, ..., s_k)$ for $w \in W$ and an element $s \in S$, either l(sw) = k + 1 or else there is an index *i* such that $w = ss_1...\widehat{s_i}...s_k$.

(F) - Folding

Suppose $w \in W$ and $s, t \in S$ are such that l(sw) = l(w) + 1 and l(wt) = l(w) + 1. Then either l(swt) = l(w) + 2 or swt = w.

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 000	0 000 00	00000	

Equivalence of the conditions

Theorem

Given a pre-Coxeter system (W, S), the conditions (D), (E) and (F) are equivalent.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
			00000	
	000	000		

Theorem

Suppose (R, Cay(W, S), 1) is a reflection system for a pre-Coxeter system (W, S). Then (D), (E) and (F) hold.

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 000	0 000 00	00000	

Theorem

Suppose (R, Cay(W, S), 1) is a reflection system for a pre-Coxeter system (W, S). Then (D), (E) and (F) hold.

Proof

• Let
$$s = (s_1, ..., s_k)$$
 be a word in S with $k > l(w(s))$.

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	o 000 000	0 000 00	00000	

Theorem

Suppose (R, Cay(W, S), 1) is a reflection system for a pre-Coxeter system (W, S). Then (D), (E) and (F) hold.

Proof

- Let $s = (s_1, ..., s_k)$ be a word in S with k > l(w(s)).
- w = w(s), $R(1, w) = \{r \in R | \Omega^r \text{ separates } v_0 \text{ and } wv_0\}$.

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	o 000 000	0 000 00	00000	

Theorem

Suppose (R, Cay(W, S), 1) is a reflection system for a pre-Coxeter system (W, S). Then (D), (E) and (F) hold.

Proof

- Let $s = (s_1, ..., s_k)$ be a word in S with k > l(w(s)).
- w = w(s), $R(1, w) = \{r \in R | \Omega^r \text{ separates } v_0 \text{ and } wv_0\}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

• Write $\Phi(s) = (r_1, ..., r_k)$. Then $\{r_1, ..., r_k\} \subseteq R(1, w)$.

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 000	0 000 00	00000	

Theorem

Suppose (R, Cay(W, S), 1) is a reflection system for a pre-Coxeter system (W, S). Then (D), (E) and (F) hold.

Proof

• Let
$$s = (s_1, ..., s_k)$$
 be a word in S with $k > l(w(s))$.

• w = w(s), $R(1, w) = \{r \in R | \Omega^r \text{ separates } v_0 \text{ and } wv_0\}$.

- Write $\Phi(s) = (r_1, ..., r_k)$. Then $\{r_1, ..., r_k\} \subseteq R(1, w)$.
- $k > l(w) \ge \#R(1, w)$ every wall has to be crossed by w.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	o 000 000	0 000 00	00000	

Theorem

Suppose (R, Cay(W, S), 1) is a reflection system for a pre-Coxeter system (W, S). Then (D), (E) and (F) hold.

Proof

• Let
$$s = (s_1, ..., s_k)$$
 be a word in S with $k > l(w(s))$.

•
$$w = w(s)$$
, $R(1, w) = \{r \in R | \Omega^r \text{ separates } v_0 \text{ and } wv_0\}$.

- Write $\Phi(s) = (r_1, ..., r_k)$. Then $\{r_1, ..., r_k\} \subseteq R(1, w)$.
- $k > l(w) \ge \#R(1, w)$ every wall has to be crossed by w.

•
$$\Rightarrow$$
 $r_i = r_j$ for some $i < j$.

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	o 000 000	0 000 00	00000	

Theorem

Suppose (R, Cay(W, S), 1) is a reflection system for a pre-Coxeter system (W, S). Then (D), (E) and (F) hold.

Proof

• Let
$$s = (s_1, ..., s_k)$$
 be a word in S with $k > l(w(s))$.

•
$$w = w(s)$$
, $R(1, w) = \{r \in R | \Omega^r \text{ separates } v_0 \text{ and } wv_0\}$.

- Write $\Phi(s) = (r_1, ..., r_k)$. Then $\{r_1, ..., r_k\} \subseteq R(1, w)$.
- $k > l(w) \ge \#R(1, w)$ every wall has to be crossed by w.
- \Rightarrow $r_i = r_j$ for some i < j.
- Apply deletion lemma for prereflection systems.

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0	0		•0000
	000	ŏŏ		

Definition

Given a set S, a **Coxeter matrix** on S is a symmetric matrix $(m_{s,t})_{s,t\in S}$ where $m_{s,t} \in \mathbb{N} \cup \{\infty\}$ such that $m_{s,t} = 1$ iff s = t.

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0	0		●0000
	000	000		

Definition

Given a set S, a **Coxeter matrix** on S is a symmetric matrix $(m_{s,t})_{s,t\in S}$ where $m_{s,t} \in \mathbb{N} \cup \{\infty\}$ such that $m_{s,t} = 1$ iff s = t.

For a Coxeter matrix $(m_{s,t})$ on S we define a group

$$ilde{W}:= < S | (st)^{m_{s,t}}, s,t \in S, m_{s,t}
eq \infty >$$

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0	0		●0000
	000	000		

Definition

Given a set S, a **Coxeter matrix** on S is a symmetric matrix $(m_{s,t})_{s,t\in S}$ where $m_{s,t} \in \mathbb{N} \cup \{\infty\}$ such that $m_{s,t} = 1$ iff s = t.

For a Coxeter matrix $(m_{s,t})$ on S we define a group

$$ilde{W}:= < S | (st)^{m_{s,t}}, s,t \in S, m_{s,t}
eq \infty >$$

Given a pre-Coxeter (W, S) system, we define a Coxeter matrix on S via $m_{s,t} = ord(st)$.

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0	0		•0000

Definition

Given a set S, a **Coxeter matrix** on S is a symmetric matrix $(m_{s,t})_{s,t\in S}$ where $m_{s,t} \in \mathbb{N} \cup \{\infty\}$ such that $m_{s,t} = 1$ iff s = t.

For a Coxeter matrix $(m_{s,t})$ on S we define a group

$$ilde{W} := < S | (st)^{m_{s,t}}, s, t \in S, m_{s,t}
eq \infty >$$

Given a pre-Coxeter (W, S) system, we define a Coxeter matrix on S via $m_{s,t} = ord(st)$.

Definition

A pre-Coxeter system (W, S) is a **Coxeter system**, if the map $\tilde{W} \to W$ defined by $s \mapsto s$ is an isomorphism.

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0	0		●0000
	000	000		

Definition

Given a set S, a **Coxeter matrix** on S is a symmetric matrix $(m_{s,t})_{s,t\in S}$ where $m_{s,t} \in \mathbb{N} \cup \{\infty\}$ such that $m_{s,t} = 1$ iff s = t.

For a Coxeter matrix $(m_{s,t})$ on S we define a group

$$ilde{\mathcal{W}}:=< S|(st)^{m_{s,t}},s,t\in S,m_{s,t}
eq\infty>$$

Given a pre-Coxeter (W, S) system, we define a Coxeter matrix on S via $m_{s,t} = ord(st)$.

Definition

A pre-Coxeter system (W, S) is a **Coxeter system**, if the map $\tilde{W} \to W$ defined by $s \mapsto s$ is an isomorphism. In this case, we call W a **Coxeter group** and S a **fundamental set of generators**.

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
000			00000	0000
	000	000		

Coxeter Diagrams

Definition

Let $M = (m_{s,t})_{s,t}$ a Coxeter matrix on a set *S*. The **Coxeter graph** for *M* consists of a vertex for each element of *S* and edges *s*, *t* wherever $m_{s,t} \ge 3$. The edges where $m_{s,t} \ge 4$ are labelled with $m_{s,t}$. The labelled graph is called a **Coxeter diagram**.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
				0000
	000	000		
	000	00		

Coxeter Diagrams

Definition

Let $M = (m_{s,t})_{s,t}$ a Coxeter matrix on a set S. The **Coxeter graph** for M consists of a vertex for each element of S and edges s, t wherever $m_{s,t} \ge 3$. The edges where $m_{s,t} \ge 4$ are labelled with $m_{s,t}$. The labelled graph is called a **Coxeter diagram**.

Definition

A Coxeter system is called **irreducible** if its Coxeter graph is connected.

General Ideas and Goals [Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
000	0 000	0000		00000

Our next goal

Theorem

Let (W, S) be a pre-Coxeter system. The following are equivalent:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- (W, S) is a Coxeter system.
- Cay(W, S) is a reflection system.
- (W, S) satisfies the exchange condition (E).

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
	0 000 000	0 000 00		00000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

A look in the rear view mirror

Proposition

Dihedral groups are Coxeter groups.

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
000	0 000 000	o 000 00	00000	00000

Math inspires Art inspires Math

(a) Hyperbolic domain construction

(b) Circle Limit I (M.C. Escher)

(日)

General Ideas and Goals	Dihedral Groups	Prereflection Systems	Reflection systems	Coxeter Systems, Diagrams and Outlook
000	o 000 000	o 000 00	00000	00000

Math inspires Art inspires Math

(c) Hyperbolic domain construction

(d) Circle Limit I (M.C. Escher)

Thanks for your attention. Any questions?