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Reflections and their generalizations

Reflection groups: groups generated by reflections along
hyperplanes in finite dimensional Euclidean space.

Example: Dihedral groups (groups generated by two
reflections in the Euclidean plane).
Example: Symmetry groups of platonic solids.
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Definition

Definition of Dihedral Groups

Definition
A group generated by two involutions, i.e. elements of order two,
is called a dihedral group.
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Examples

(All) The dihedral groups

Finite dihedral groups
Given m ≥ 2, let L, L′ ⊆ R2 be two lines through the origin in the
Euclidean plane with angle 2π

m between them. Furthermore, let rL,
rL′ : R2 → R2 denote the reflections along those lines. We define
Dm :=< rL, rL′ >≤ O(2) ≤ Isom(R2).

Infinite dihedral group
Let r0, r1 : R→ R be the reflections about 0, 1 resp. We define
D∞ :=< r0, r1 >≤ Isom(R).
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Examples

The dihedral groups as semidirect products

Reminder: Semi-direct product
Let G , H be groups and φ : G ×H → H an action of G on H. The
set H × G carries a group structure via
(h1, g1) · (h2, g2) := (h1φ(g1, h2), g1g2), called the semi-direct
product and denoted by H oφ G .

Construction via semi-direct product
Denote by Cm the cyclic group of order m (including ∞). Write
C2 = {±1}. Then C2 acts on Cm via εg = g ε. Then Cm o C2 is
generated by (0,−1), (d ,−1) where 0 is the neutral and d the
generating element of Cm.
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Examples

Finite presentations of dihedral groups

Reminder: Group presentation
Let S be any set and R be a set of words over S ∪ S−1. We denote
by < S|R > the quotient of the free group over S by its normal
subgroup generated by R.

Construction via (finite) presentations
The groups < s, t|s2, t2, (st)m > for m > 1 and < s, t|s2, t2 > are
clearly generated by the involutions s, t.
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Properties

Equivalence of the definitions

Lemma
Let W be a dihedral group generated by the involutions s, t. Then
P :=< st > is normal in W , W = P o C2 and [W : P] = 2.

Corollary
The following are isomorphisms:

Dm → Cm o C2 →< s, t|s2, t2, (st)m >

rL, rL′ 7→ (0,−1), (d ,−1) 7→ s, t
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Properties

Proof

Put p = st, < s >= C2

sps−1 = ssts = ts = p−1,
tpt−1 = tstt = ts = p−1
⇒ P =< p > normal.
t = sp, so W = C2P.
The relation sp = t = p−1s allows swapping s and pk around,
so every w ∈W can uniquely we written as smpn.
⇒W = P o C2.
W = P ∪ sP ⇒ [W : P] ≤ 2.
Suppose [W : P] = 1, i.e. W = P.

⇒ W is abelian.
⇒ p2 = s2t2 = 1⇒ |W | = 2
Contradiction to 1, s, t ∈W being mutually distinct.
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Properties

Geometric properties of dihedral groups



General Ideas and Goals Dihedral Groups Prereflection Systems Reflection systems Coxeter Systems, Diagrams and Outlook

Definition

Pre-reflection Systems

Definition
Let W be a group, R ⊆W a generating set, Ω a connected
simplicial graph which is acted on by W , and v0 ∈ Vert(Ω) a base
point. Then (R,Ω, v0) is called a prereflection system for W , if

1 All elements of R have order 2,
2 R is closed in W under conjugation,
3 For each edge of Ω there is a unique element of R which flips

it (i.e. swaps its endpoints).
4 Each element of R flips at least one edge of Ω.
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Geometric perspective

Inspecting the graph

Observation
Let (R,Ω, v0) be a prereflection system for a group W . Then W
acts transitively on Ω.

Proof:
Ω is connected, so for any two vertices v ,w there is a path
(v , v1, ..., vn,w).
Each edge {vi , vi+1} is flipped by some ri ∈ R.
⇒ rn...r1v = w
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Geometric perspective

Paths vs. Words
Let (R,Ω, v0) be a prereflection system for a group W

We denote by S = S(v0) ⊆ R the set of prereflections that
flip an edge originating at v0.
Then R is the set of conjugates of S.
A given word s = (s1, ..., sk) in S bijectively corresponds to a
path (v0, ..., vk) in Ω:

wi = s1...si ∈W "Path" to node vi = wiv0.
ri = wi−1siw−1i−1 prereflection flipping {vi−1, vi}
Φ(s) = (r1, ..., rk) "Global perspective" on the path.

S generates W .
R generates W , so we proof R ⊆< S >.
Let r ∈ R and e be an edge flipped by r .
Choose an edge path from v0 with last edge e.
Let s = (s1, ..., sk) be the corresponding word with
Φ(s) = (r1, ..., rk)
r = rk = (s1...sk−1)sk(s1...sk)−1 ⇒ r ∈< S >
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Then R is the set of conjugates of S.
A given word s = (s1, ..., sk) in S bijectively corresponds to a
path (v0, ..., vk) in Ω:

wi = s1...si ∈W "Path" to node vi = wiv0.
ri = wi−1siw−1i−1 prereflection flipping {vi−1, vi}
Φ(s) = (r1, ..., rk) "Global perspective" on the path.

S generates W .
R generates W , so we proof R ⊆< S >.
Let r ∈ R and e be an edge flipped by r .
Choose an edge path from v0 with last edge e.
Let s = (s1, ..., sk) be the corresponding word with
Φ(s) = (r1, ..., rk)

r = rk = (s1...sk−1)sk(s1...sk)−1 ⇒ r ∈< S >
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Geometric perspective

Deletion property

Lemma
Let (R,Ω, v0) be a prereflection system for a group W and
S = S(v0). If s = (s0, ..., sk) is a word over S and ri = rj for some
i < j where Φ(s) = (r1, ..., rk), then s1...sk = s1...ŝi ...ŝj ...sk .

Proof
Recall ri = s1...si−1sisi−1...s1 and rj = s1...sj−1sjsj−1...s1.
ri = rj ⇒ s1...si−1sisi−1...s1 = s1...sj−1sjsj−1...s1
Multiply from right with s1...sj , from left with si ...s1.
⇒ si ...sj = si+1...sj−1.
⇒ Replace subword (si , ..., sj) by (si+1, ..., sj−1).
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Preparation of strengthened conditions

Walls

Definition
For a given prereflection system (R,Ω, v0) and r ∈ R the set Ωr of
midpoints of edges that are flipped by r is called the wall
corresponding to r .

Remark
An edge path corresponding to a word s = (s1, ...sk) crosses Ωr if
and only if r occurs in Φ(s).

Lemma
For each r ∈ R, Ω \ Ωr has either one or two connected
components. If it has two, they are interchanged by r .
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Preparation of strengthened conditions

The proof that walls separate the world
Proof

W.l.o.g we can assume r = s ∈ S.

R are the conjugates of S, so write r = wsw−1.
wΩs = Ωwsw−1 = Ωr

⇒ w maps Ω \ Ωr homeomorphically to Ω \ Ωs .
For a vertex v there is either a path in Ω \Ωs to v0 or to sv0.

Let t = (s1, ..., sk) be the word corresponding to a minimal
edge path in Ω from v0 to v .
Case 1: s does not occur in Φ(t) = (r1, ..., rk)
⇒ t does not cross Ωs ⇒ Done.
Case 2: s occurs in Φ(t)
s occurs exactly once (deletion lemma yields �to t minimal)
Consider t ′ = (s, s1, ..., sk) which defines edge path sv0 to v .
Φ(t ′) = (s, sr1s, ..., srks)
⇒ s occurs exactly twice in Φ(t ′).
Deletion lemma: path from v0 to sv0 not crossing Ωs .
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Definition
Let (R,Ω, v0) be a prereflection system for a group W . Then it is
called a reflection system, if for each s ∈ S(v0) the graph Ω \ Ωs

has two components. The elements of R are called reflections and
the elements of S are called fundamental reflections.

Lemma
Suppose (R,Ω, v0) is a reflection system for a group W . Then W
acts freely on Ω.

Proof
Suppose wv0 = v0 for some w 6= 1.
Write w = s0...sk (minimal length) <-> Edge path (v0, ..., v0)
Each wall Ωsi is crossed an even number of times.
⇒ Apply deletion lemma ⇒ � to minimal length!
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Road to Coxeter Systems

Definition
A group W together with a generating set S of elements of order
two is called a pre-Coxeter system.
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Combinatorial conditions for a pre-Coxeter systems (W , S)

(D) - Deletion
If s = (s1, ..., sk) is a word in S with k > l(w(s)), then there are
indices i < j so that the subword s ′ = (s1, ..., ŝi , ..., ŝj , ..., sk) is also
an expression for w(s).

(E) - Exchange
Given a reduced expression s = (s1, ..., sk) for w ∈W and an
element s ∈ S, either l(sw) = k + 1 or else there is an index i such
that w = ss1...ŝi ...sk .

(F) - Folding
Suppose w ∈W and s, t ∈ S are such that l(sw) = l(w) + 1 and
l(wt) = l(w) + 1. Then either l(swt) = l(w) + 2 or swt = w .
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Equivalence of the conditions

Theorem
Given a pre-Coxeter system (W ,S), the conditions (D), (E) and
(F) are equivalent.
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Why all that?

Theorem
Suppose (R,Cay(W ,S), 1) is a reflection system for a pre-Coxeter
system (W , S). Then (D), (E) and (F) hold.

Proof
Let s = (s1, ..., sk) be a word in S with k > l(w(s)).
w = w(s), R(1,w) = {r ∈ R|Ωr separates v0 and wv0}.
Write Φ(s) = (r1, ..., rk). Then {r1, ..., rk} ⊆ R(1,w).
k > l(w) ≥ #R(1,w) - every wall has to be crossed by w .
⇒ ri = rj for some i < j .
Apply deletion lemma for prereflection systems.
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Coxeter Systems

Definition
Given a set S, a Coxeter matrix on S is a symmetric matrix
(ms,t)s,t∈S where ms,t ∈ N ∪ {∞} such that ms,t = 1 iff s = t.

For a Coxeter matrix (ms,t) on S we define a group

W̃ :=< S|(st)ms,t , s, t ∈ S,ms,t 6=∞ >

Given a pre-Coxeter (W ,S) system, we define a Coxeter matrix on
S via ms,t = ord(st).

Definition
A pre-Coxeter system (W ,S) is a Coxeter system, if the map
W̃ →W defined by s 7→ s is an isomorphism. In this case, we call
W a Coxeter group and S a fundamental set of generators.
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Coxeter Diagrams

Definition
Let M = (ms,t)s,t a Coxeter matrix on a set S. The Coxeter
graph for M consists of a vertex for each element of S and edges
s, t wherever ms,t ≥ 3. The edges where ms,t ≥ 4 are labelled with
ms,t . The labelled graph is called a Coxeter diagram.

Definition
A Coxeter system is called irreducible if its Coxeter graph is
connected.
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Our next goal

Theorem
Let (W ,S) be a pre-Coxeter system. The following are equivalent:

(W ,S) is a Coxeter system.
Cay(W ,S) is a reflection system.
(W ,S) satisfies the exchange condition (E).
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A look in the rear view mirror

Proposition
Dihedral groups are Coxeter groups.
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Math inspires Art inspires Math

(a) Hyperbolic domain construction (b) Circle Limit I (M.C. Escher)

Thanks for your attention. Any questions?
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