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Geodesics

Geodesics

A geodesic in a metric space (X,d) is an isometric embedding
c : [a,b] −→ X, where [a,b] ⊆ R is a closed interval. A metric
space X is called geodesic if for all p,q ∈ X there is a geodesic
from p to q.

Examples

• Every normed real vectorspace is geodesic.
• Every connected metric graph is geodesic.
• The metric dg of every complete Riemannian manifold (M,g) is
geodesic.

[Note that a Riemannian geodesic, which is defined by ∇
dt ċ = 0, is

not exactly the same as a geodesic as defined above. However,
every geodesic in our sense in a Riemannian manifold is a
Riemannian geodesic.]
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The CAT(0) condition

A definition of CAT(0)-spaces

A (nonempty) geodesic metric space (X,d) is called a
CAT(0)-space if the following holds. Let a,b, c ∈ X. By the
triangle inequality, there exist points ā, b̄, c̄ in euclidean space R2

with d(a,b) = ||ā− b̄||, d(b, c) = ||b̄− c̄||, d(c,a) = ||c̄− ā||. If p is
a point on a geodesic from a to b, and if p̄ is the corresponding
point on the line from a to b, with d(a,p) = ||ā− p̄|| and
d(p,b) = ||p̄− b̄||, then d(p, c) 6 ||p̄− c̄||.
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The CAT(0) condition

Examples

• A normed vectorspace (V, |.|) is CAT(0) if and only if the norm
satisfies the parallelogram law, |u− v|2 + |u+ v|2 = 2(|u|2 + |v|2).
• A metric graph is a CAT(0)-space if and only if it is a tree.
• Every complete, simply connected Riemannian manifold of
sectional curvature 6 0 is a CAT(0)-space.
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The CAT(0) condition

Properties of CAT(0)-spaces

• Geodesics in CAT(0)-spaces are unique.
• The cartesian product of CAT(0)-spaces is again a CAT(0)-space.
• A nonempty geodesically convex subset of a CAT(0)-space is
again a CAT(0)-space.
• If f : X −→ Y is a locally isometric map between CAT(0)-spaces,
then f is an isometric embedding.
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Convex sets and centers

Theorem

Let X be a CAT(0)-space, let A ⊆ X be a complete, convex and
nonempty subset. Then for every p ∈ X, there is a unique point
πA(p) ∈ A at minimal distance from p. The map πA : X −→ A is
1-Lipschitz and a strong deformation retraction. In particular, X is
contractible.

Theorem (Bruhat-Tits)

Let X be a complete CAT(0)-space and let B ⊆ X be bounded.
Then there is a unique point p ∈ X and r > 0 such that B̄r(p) is
the smallest closed ball containing B. The point p is called the
center of B.

Corollary (Bruhat-Tits Fixed Point Theorem)

Let X be a complete CAT(0)-space and let G be a group that acts
isometrically on X. If some q ∈ X has a bounded G-orbit G(q),
then G has a fixed point in X.
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Angles and the space of directions

Angles

Let c1, c2 : [0, r] −→ X be geodesics in a CAT(0) space, with r > 0
and p = c1(0) = c2(0). The angle ∠(c1, c2) ∈ [0,π] is defined by

sin(
1

2
∠(c1, c2)) = lim

t→0

d(c1(t), c2(t))

2t
.

The angle defines a pseudometric on the set of all non-constant
geodesics starting at p. The metric completion of this
pseudometric space is the space of directions ΣpX.

In a Riemannian manifold M, the space of directions can be
identified with the unit sphere in the tangent space TpM.
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The CAT(1) condition

The spherical distance between two points a,b ∈ S2 is given by
cos(dS2(a,b)) = 〈a,b〉.

The CAT(1) condition

Let Σ be a metric space. Given a,b, c ∈ Σ with
d(a,b) + d(b, c) + d(c,a) < 2π, there exists points ā, b̄, c̄ ∈ S2
with d(a,b) = dS2(ā, b̄), d(b, c) = dS2(b̄, c̄), d(c,a) = dS2(c̄, ā).
We call Σ a CAT(1) space if the following hold in this situation.
• There is a geodesic from a to b.
• If p is a point on some geodesic from a to b, with comparison
point p̄ ∈ S2, then d(p, c) 6 dS2(p̄, c̄).
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The CAT(1) condition

Examples

• The sphere Sn, with the angular metric, is a CAT(1)-space.
• Every CAT(0)-space is a CAT(1)-space.
• A normed vectorspace is a CAT(1)-space if and only if the norm
satisfies the parallelogram law.
• A metric graph is a CAT(1)-space if it contains no circles of
length < 2π.
• Every complete, simply connected Riemannian manifold of
sectional curvature 6 1 is a CAT(1)-space.
• In a CAT(1) space, geodesics between points at distance < π are
unique.
• If X is a CAT(0)-space and if p ∈ X, then the space of directions
ΣpX is a CAT(1)-space.
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Convex polytopes

Convex polytopes

A convex polytope P is the convex hull of a finite set of points in
some real vector space (possibly of infinite dimension). If an affine
hyperplane H intersects P nontrivially, and if P is contained in one
of the two half-spaces determined by H, then F = P ∩H is called a
face of P. Then F is again a convex polytope, and P has finitely
many faces.

Examples

Let e1, . . . , en be the standard basis of Rn. The convex hull of
e1, . . . , en is called the standard n− 1-simplex ∆n−1. The convex
hull of ±e1, . . . ,±en is called the standard n-octahedron �n. The
convex hull of ±e1 ± e2 · · · ± en is called the standard n-cube �n.
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Convex cell complexes

Convex cell complex

A convex cell complex is a collection C of convex polytopes in
some real vector space W, with the following properties.
• If P is in C and if F is a face of P, then F is in C.
• If P,Q ∈ C have nonempty intersection, then P ∩Q is a face in P
and in Q.

Every polytope P carries a natural compact topology (and is
homeomorphic to a closed ball in some euclidean space). The weak
topology on X(C) =

⋃
C is defined as follows. A set A ⊆ X(C) is

closed if and only if A ∩ P is closed in P, for every P ∈ C. In the
weak topology, X(C) is a regular CW complex (but possibly not
metrizable).
[Bridson-Haefliger use a slightly more general definition.]
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Abstract simplicial complexes

Abstract simplicial complexes

An abstract simplicial complex is a collection S of finite sets with
the following property:
• If a ⊆ b ∈ S, then a ∈ S.
The elements of S are called simplices, and the elements of the
singletons in S are called vertices.

Example

Let (P,6) be a poset. The derived complex P ′ consists of all
linearly ordered finite subsets of P. This is an abstract simplicial
complex.
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Abstract simplicial complexes

The geometric realization of an abstract simplicial complex

Let S be an abstract simplicial complex with vertex set V. Let W
be the real vector space with basis V. The elements of W are thus
finite formal linear combinations of vertices. If {v0, . . . , vk} is a
simplex, we let P denote the convex hull of {v0, . . . , vk} in W. The
resulting convex cell complex is denoted by C(S), and X(C(S)) is
called the geometric realization of S.
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Abstract simplicial complexes

Barycentric subdivision

Let C be a convex cell complex. Then C is, in particular, a poset.
The derived complex C ′ is called the barycentric subdivision of C.
If we choose for each cell P ∈ C a point cP in the interior of P (eg.
the center of mass of P), then we have a bijection from the
vertices of the derived complex C ′ to the points {cp | P ∈ C}, which
extends linearly to a bijection

X(C ′) −→ X(C).

With respect to the weak topologies, this map is a
homeomorphism.
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Abstract simplicial complexes

Piecewise euclidean cell complexes

Suppose that C is a convex cell complex, and that for every P ∈ C,
we fix an affine linear bijection iP : P −→ P ′ to a convex polytope
P ′ in some finite dimensional euclidean vector space. Then iP
induces a metric dP on P. We call such a collection of affine linear
bijections compatible if the metrics induced by iP and iQ agree on
P ∩Q, for all P,Q ∈ C. We then call C with the collection of
metrics d = {dP | P ∈ C} a piecewise euclidean cell complex.
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Abstract simplicial complexes

The pseudometric

Let (C,d) be a piecewise euclidean cell complex. A string in X(C)
is a sequence of points x0, . . . , xm in X such that xj, xj−1 are
contained in a common polytope Pj, for j = 1, . . . ,m. The length
of the string is then `(x0, xm) =

∑m
j=1 dPj

(xj−1, xj). The distance
d`(p,q) is defined to be the infimum of the lengths of all strings
from p to q. It is clear that d` is a pseudometric on X.

• In general, d` will not be a metric. Let C be the metric graph
with vertex set N ∪ {±∞}, with edges of length 2−n between n and
±∞. In the resulting pseudometric, d`(−∞,+∞) = 0.
• If C is not locally finite, then the weak topology on X(C) is not
metrizable. Hence d` will possibly induce a different topology on
X(C).
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Bridson’s Theorem

Theorem (Bridson)

Let (C,d) be a piecewise euclidean cell complex. If C is locally
finite or if there are only finitely many isometry types of polytopes
in C (then we say that (C,d) has finitely many shapes), then d` is
a complete metric on X(C).
Points at finite distance can be joined by geodesics.
For every x ∈ X(C), there is an εx > 0 such that the following
holds.
• If d`(x,y) < εx, then x,y ∈ P for some P ∈ C, and
dP(x,y) = d`(x,y).

In a similar way, one may define piecewise spherical cell complexes.
In this case, the metric on the polytopes is induced by metrics on
convex polyhedral subsets of spheres. An analog of Bridson’s
Theorem holds for such piecewise spherical cell complexes.
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The homotopy type

Theorem (Dowker)

Let (C,d) be a piecewise euclidean cell complex. Assume that C is
locally finite or that there are only finitely many isometry types of
polytopes in (C,d). Then the identity map is a homotopy
equivalence between the weak topology on X(C) and the topology
determined by d`.
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Links

The geometric link in a convex euclidean polytope

Let P be a convex polytope in euclidean space, and let p ∈ P. The
inward tangent cone CpP of P at p consists of all vectors v such
that p+ tv ∈ P holds for some t > 0. This set is a closed convex
cone in the ambient vector space. The geometric link lkp(P) is the
set of all unit vectors in CpP. This set is a convex spherical
polytope, which we endow with the angular metric.

If p is an interior point in P, then lkpP is a sphere of dimension
dim(P) − 1.
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Links

The geometric link

Suppose that (C,d) is a piecewise euclidean cell complex. The
geometric link lkpX of p ∈ X(C) is the union of all links lkp(P), for
p ∈ P ∈ C. This set is a piecewise spherical cell complex in a
natural way.
If (C,d) has finitely many shapes, then the same is true for lkpX.
By Bridson’s Theorem for piecewise spherical complexes, we obtain
a complete metric dlk on lkpX, where points at finite distance can
be joined by a geodesic.
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Gromov’s Theorem

Theorem (Gromov, Ballmann, Bridson)

Let (C,d) be a piecewise euclidean cell complex with finitely many
shapes. The following are equivalent.
• (X(C),d`) is a CAT(0) space.
• (X(C),d`) is simply connected and each lkpX is a CAT(1)-space
for every vertex {p} ∈ C.
• (X(C),d`) is contractible and each lkpX is a CAT(1)-space for
every vertex {p} ∈ C.
• (X(C),d`) is uniquely geodesic and each lkpX is a CAT(1)-space
for every vertex {p} ∈ C.

Literature:
Bridson, Haefliger, Spaces of non-positive curvature.
Davis, The geometry and topology of Coxeter groups.
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