9. Übungszettel zur Vorlesung "Lokalkompakte Gruppen"

WiSe 2017/18 WWU Münster Prof. Dr. Linus Kramer Nils Leder Antoine Beljean

Definition: Sei G eine Gruppe und $\pi_1: G \to \operatorname{GL}(V_1), \pi_2: G \to \operatorname{GL}(V_2)$ lineare Darstellungen von G auf komplexen Vektorräumen V_1, V_2 . Wir sagen, die Darstellungen π_1 und π_2 sind isomorph zueinander, wenn es einen G-äquivarianten \mathbb{C} -linearen Isomorphismus $\varphi: V_1 \to V_2$ gibt, d.h. es gilt $\varphi(gu) = g\varphi(u)$ für alle $g \in G, u \in V_1$.

Aufgabe 9.1

Seien V_1, V_2 komplexe Vektorräume, $\pi_1: G \to \operatorname{GL}(V_1), \pi_2: G \to \operatorname{GL}(V_2)$ irreduzible, lineare Darstellungen einer Gruppe G und $\pi_1 \times \pi_2$ die induzierte lineare Darstellung auf $V_1 \times V_2$. Zeige, dass die folgenden beiden Aussagen äquivalent sind:

- i) Die Darstellungen π_1 und π_2 sind isomorph zueinander.
- ii) $V_1 \times V_2$ besitzt einen G-invarianten Unterraum V mit

$$V \notin \{\{0\}, V_1 \times \{0\}, \{0\} \times V_2, V_1 \times V_2\}.$$

Aufgabe 9.2

Bewerte den folgenden "Beweis", der zeigen soll, dass jede kompakte Gruppe sich injektiv und stetig in ein endliches Produkt $U(m_1) \times \ldots \times U(m_r)$ von unitären Matrizengruppen einbetten lässt.

Beweis: Zu jedem $g \in G - \{1\}$ gibt es einen Morphismus $\rho_g : G \to U(m_g)$ mit $\rho_g(g) \neq 1$. Da ρ_g stetig ist, gibt es also eine offene Umgebung W_g von g mit $\rho_g(h) \neq 1$ für alle $h \in W_g$. Da G kompakt ist, wird G von endlich vielen solchen W_g überdeckt, also $G \subseteq W_{g_1} \cup \ldots \cup W_{g_r}$. Damit ist

$$\rho_{g_1} \times \ldots \times \rho_{g_r} : G \to U(m_{g_1}) \times \ldots \times U(m_{g_r})$$

die gesuchte Einbettung.

Bitte wenden.

Aufgabe 9.3

Sei G eine kompakte Gruppe, E ein normierter Vektorraum und $G \times E \to E$ eine stetige lineare Wirkung von G auf E.

Zeige, dass das Supremum $\sup\{\|gu\| \mid g \in G, u \in B_1^E(0)\}$ existiert.

Hinweis: Verwende Wallace' Lemma.

Aufgabe 9.4

In dieser Aufgabe zeigen wir, dass man aus einer linearen, stetigen Wirkung einer kompakten Gruppe auf einem Hilbertraum eine unitäre Wirkung (also einen Hilbert-G-Modul) konstruieren kann.

Sei $(E, \langle | \rangle)$ ein Hilbertraum, G eine kompakte Gruppe und $G \times E \to E$ eine lineare, stetige Wirkung von G auf E. Zeige:

- a) Die Abbildung $b(u,v) = \int_G \langle g^{-1}u \mid g^{-1}v \rangle dg$ definiert eine stetige positiv definite hermitesche Form auf E und b ist G-invariant, d.h. es gilt b(hu,hv) = b(u,v) für alle $h \in G, u,v \in E$.
- b) Die von b induzierte Norm ist äquivalent zu der ursprünglichen Norm $\|.\|$ auf E, d.h. es gibt Konstanten $\alpha, \beta > 0$ so, dass

$$\alpha b(u, u) \le ||u||^2 \le \beta b(u, u)$$

für alle $u \in E$ gilt.

Hinweis: Verwende Aufgabe 9.3.

Abgabe bis: Donnerstag, den 14.12.2017, 8 Uhr im Briefkasten 29