8. Übungszettel zur Vorlesung "Lokalkompakte Gruppen"

WiSe 2017/18 WWU Münster Prof. Dr. Linus Kramer Nils Leder Antoine Beljean

Aufgabe 8.1

Seien $(E, ||.||_E)$ und $(F, ||.||_F)$ normierte Vektorräume. Sei B(E, F) die Menge der beschränkten linearen Operatoren von E nach F versehen mit der Operatornorm ||.||. Seien $S, T \in B(E, F), u \in E$ und $z \in \mathbb{C}$ beliebig. Zeige:

- a) $||zT|| = |z| \cdot ||T||$
- b) $||T(u)||_F \le ||T|| \cdot ||u||_E$
- c) $||T + S|| \le ||T|| + ||S||$
- d) Ist E = F, so gilt $||T \circ S|| \le ||T|| \cdot ||S||$.

Aufgabe 8.2

Sei $(E, \|.\|)$ ein Banachraum (also ein vollständiger, normierter Vektorraum) und B(E) die Menge der beschränkten linearen Operatoren auf E.

Zeige: Die Einheitengruppe U von B(E) ist offen in B(E) und (U, \circ) bildet eine topologische Gruppe.

Hinweis: Zeige für alle $T \in B(E)$ mit ||T|| < 1, dass $\mathbb{1} + T \in U$ gilt. Verwende hierfür die geometrische Reihe. Um die Stetigkeit der Inversenbildung $i: U \to U, g \mapsto g^{-1}$ zu zeigen, beweise zunächst, dass i stetig auf einer Einsumgebung ist.

Aufgabe 8.3

Seien E und F normierte Vektorräume und $T:E\to F$ ein linearer Operator. Zeige, dass die folgenden Aussagen äquivalent sind:

- i) T ist ein kompakter Operator.
- ii) Die Menge $T(B_1^E(0))$ ist relativ kompakt in F, d.h. $\overline{T(B_1^E(0))}$ ist kompakt.
- iii) Für jede beschränkte Folge $(x_n)_{n\in\mathbb{N}}$ in E besitzt $(T(x_n))_{n\in\mathbb{N}}$ eine konvergente Teilfolge.

Bitte wenden.

Aufgabe 8.4

Sei $(E, \langle | \rangle)$ ein unendlich-dimensionaler Hilbertraum und $C(E) \subseteq B(E)$ die Teilmenge aller kompakten linearen Operatoren auf E.

Zeige: Die Menge C(E) ist ein echtes beidseitiges Ideal im Ring B(E).

*-Aufgabe

Sei $K=(\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}}$ mit der diskreten Topologie und $L=(\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}}$ mit der Produkttopologie. Sei $G=K\times L$.

Zeige: Es gibt einen stetigen Gruppenautomorphismus $\varphi: G \to G$, dessen Umkehrabbildung φ^{-1} aber nicht stetig ist. (Dies bedeutet, φ ist kein Automorphismus in der Kategorie der topologischen Gruppen.)

Abgabe bis: Donnerstag, den 7.12.2017, 8 Uhr im Briefkasten 29