7. Übungszettel zur Vorlesung "Lokalkompakte Gruppen"

WiSe 2017/18 WWU Münster

Prof. Dr. Linus Kramer Nils Leder Antoine Beljean

Aufgabe 7.1

Sei G eine lokalkompakte Gruppe. Zeige: Ist G unendlich, so ist $C_c(G)$ ein unendlich-dimensionaler reeller Vektorraum.

Hinweis: Benutze die Tychonoff-Eigenschaft, um eine unendliche linear unabhängige Familie $(\varphi_n)_{n\in\mathbb{N}}$ von stetigen Funktionen mit kompaktem Träger auf G zu konstruieren.

Aufgabe 7.2

Sei E ein Hilbertraum und $F\subseteq E$ ein Untervektorraum. Zeige:

a)
$$F^{\perp} = \overline{F}^{\perp}$$

b)
$$(F^{\perp})^{\perp} = \overline{F}$$

Definition: Sei E ein Hilbertraum und $T: E \to E$ ein linearer Operator. Dann heißt T idempotent, wenn $T^2 = T$ gilt. Wir nennen T selbstadjungiert, wenn $\langle T(x) \mid y \rangle = \langle x \mid T(y) \rangle$ für alle $x, y \in E$ gilt.

Aufgabe 7.3

Sei E ein Hilbertraum und P ein stetiger, linearer Operator. Zeige, dass die folgenden Aussagen äquivalent sind:

- i) P ist die orthogonale Projektion auf einen abgeschlossenen Unterraum F von E, d.h. es gibt einen abgeschlossenen Unterraum $F \subseteq E$ mit P(x) = x für alle $x \in F$ und P(y) = 0 für alle $y \in F^{\perp}$.
- ii) P ist idempotent und selbstadjungiert.

Bitte wenden.

Aufgabe 7.4

Wir betrachten den $\mathbb{C}\text{-Vektorraum}$ der komplexen Polynome $\mathbb{C}[T]$ mit der Supremumsnorm

$$||f||_{\infty} := \sup\{|f(t)| \mid t \in [0,1]\}.$$

Sei weiter $\frac{d}{dT}: \mathbb{C}[T] \to \mathbb{C}[T]$ der Ableitungsoperator, d.h. ein Polynom $f \in \mathbb{C}[T]$ wird auf seine Ableitung $f' = \frac{df}{dT}$ abgebildet. Zeige:

- a) $\|.\|_{\infty}$ definiert eine Norm auf $\mathbb{C}[T]$.
- b) Die Abbildung $\frac{d}{dT}$ ist ein linearer, unbeschränkter Operator auf $\mathbb{C}[T]$.

*-Aufgabe

Sei V ein normierter $\mathbb C$ -Vektorraum. Zeige: V ist genau dann ein Prä-Hilbertraum, wenn für alle $x,y\in V$ die Parallelogrammgleichung

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$

gilt.

Abgabe bis: Donnerstag, den 30.11.2017, 8 Uhr im Briefkasten 29