5. Übungszettel zur Vorlesung "Lokalkompakte Gruppen"

WiSe 2017/18 WWU Münster Prof. Dr. Linus Kramer Nils Leder Antoine Beljean

Aufgabe 5.1

Sei R ein kommutativer Ring und G eine Gruppe. Sei R[G] der zugehörige Gruppenring.

- a) Zeige, dass R[G] folgende universelle Eigenschaft besitzt: Ist $f:R\to S$ ein Ringhomomorphismus und $\varphi:G\to S^\times$ ein Gruppenhomomorphismus, so existiert ein eindeutiger Ringhomomorphismus $F:R[G]\to S$, der f und φ fortsetzt. Folgere hieraus, dass es eine Bijektion zwischen $\mathrm{Hom}_{Grp}(G,S^\times)$ und $\mathrm{Hom}_{Rng}(\mathbb{Z}[G],S)$ gibt.
- b) Sei G eine nicht-triviale endliche Gruppe. Zeige: R[G] enthält nicht-triviale Nullteiler.

Aufgabe 5.2

Sei R ein kommutativer Ring und $G = \mathbb{Z}$. Zeige: Der Gruppenring R[G] ist isomorph zum Ring der Laurent-Polynome $R[X, X^{-1}]$.

Aufgabe 5.3

Seien G und H profinite Gruppen und $\varphi:G\to H$ ein (nicht notwendig stetiger) Gruppenhomomorphismus. Zeige, dass φ genau dann stetig ist, wenn für jeden offenen Normalteiler $N \subseteq H$ das Urbild $\varphi^{-1}(N)$ offen in G ist.

Bitte wenden.

Aufgabe 5.4

Sei G eine Gruppe. Sei $\mathcal B$ die Menge aller Linksnebenklassen von Untergruppen $H\subseteq G$ mit $[G:H]<\infty.$

- a) Zeige: Die Menge $\mathcal B$ bildet die Basis einer Topologie $\mathcal T$ auf G.
- b) Sei I die Menge aller Normalteiler von endlichem Index in G. Definiere

$$\hat{G} := \{(g_N N)_{N \in I} \in \prod_{N \in I} G/N \mid g_N N' = g_{N'} N' \text{ für alle } N, N' \in I \text{ mit } N \subseteq N'\}$$

versehen mit der von der Produkttopologie (bzgl. den diskreten Topologien auf den endlichen Gruppen $G/N, N \in I$) induzierten Teilraumtopologie. Zeige: \hat{G} ist eine profinite Gruppe.

c) Zeige: Die Abbildung $i: G \to \hat{G}, g \mapsto (gN)_{N \in I}$ ist bzgl. \mathcal{T} stetig und das Bild i(G) ist dicht in \hat{G} .

Man nennt \hat{G} den profiniten Abschluss von G.

Abgabe bis: Donnerstag, den 16.11.2017, 8 Uhr im Briefkasten 29