4. Übungszettel zur Vorlesung "Lokalkompakte Gruppen"

WiSe 2017/18 WWU Münster Prof. Dr. Linus Kramer Nils Leder Antoine Beljean

Aufgabe 4.1

Beweise: Jede abzählbare, lokalkompakte Gruppe G ist diskret.

Aufgabe 4.2

Sei $(F_i)_{i\in I}$ eine Familie von endlichen Gruppen $F_i\neq\{1\}$ versehen mit der diskreten Topologie. Sei $G=\prod_{i\in I}F_i$. Zeige: G ist genau dann metrisierbar, wenn die Menge I höchstens abzählbar ist.

Aufgabe 4.3

Sei G eine Hausdorff'sche topologische Gruppe. Zeige: Wenn es eine Einsumgebung $U \subseteq G$ gibt, die keine nicht-triviale abgeschlossene Untergruppe enthält, dann gibt es eine Einsumgebung $V \subseteq G$, die keine nicht-triviale Untergruppe enthält, d.h. G hat keine kleinen Untergruppen.

Hinweis: Verwende, dass G ein Tychonoff-Raum ist.

Aufgabe 4.4

Sei $G = \mathrm{GL}_n(\mathbb{C})$ mit der üblichen Topologie. Zeige: G besitzt keine kleinen Untergruppen.

Hinweis: Betrachte zu $A \in G - \{e\}$ die zugehörige Jordan-Normalform. Zeige zudem, dass die Eigenwerte von A in folgendem Sinne stetig von A abhängen: Für beliebiges $\varepsilon > 0$ gibt es eine Einsumgebung $U \subseteq G$ so, dass für jedes $A \in U$ und jeden Eigenwert λ von A gilt $|1 - \lambda| < \varepsilon$.

*-Aufgabe

Zeige:

- a) Die Cantor-Menge $C \subseteq [0,1]$ ist mager.
- b) Die Menge der rationalen Zahlen $\mathbb{Q} \subseteq \mathbb{R}$ ist keine G_{δ} -Menge.

Abgabe bis: Donnerstag, den 9.11.2017, 8 Uhr im Briefkasten 29