3. Übungszettel zur Vorlesung "Lokalkompakte Gruppen"

WiSe 2017/18 WWU Münster Prof. Dr. Linus Kramer Nils Leder Antoine Beljean

Aufgabe 3.1

Sei $G=\mathbb{Z}$ und p prim. Wir definieren die p-adische Metrik d_p durch

$$d_p(n,m) := \inf\{2^{-k} \mid k \in \mathbb{N} \text{ mit } p^k | (n-m)\}.$$

Zeige:

- a) d_p definiert eine links-invariante Metrik auf \mathbb{Z} .
- b) (\mathbb{Z}, d_p) ist eine nicht-diskrete, total-unzusammenhängende topologische Gruppe.

Aufgabe 3.2

Sei G eine topologische Gruppe und $N \subseteq G$ ein abgeschlossener Normalteiler. Beweise: Sind N und G/N total unzusammenhängend, so ist auch G total unzusammenhängend.

Aufgabe 3.3

Sei G eine Hausdorff'sche topologische Gruppe und G° offen in G. Sei $N \subseteq G$ ein Normalteiler in G mit $N \cap G^{\circ} = \{e\}$ und $G^{\circ}N = G$. Zeige:

- a) Für jede Zusammenhangskomponente C von Genthält $N\cap C$ genau ein Element.
- b) N ist abgeschlossen in G und der Quotient G/N ist zusammenhängend.

Bitte wenden.

Aufgabe 3.4

Wir betrachten folgende reelle Algebra A: Sei $A = (\mathbb{R}^2, +)$ als abelsche Gruppe (versehen mit der Standardtopologie). Die Multiplikation in A sei gegeben durch

$$(x_1, y_1) \cdot (x_2, y_2) := (x_1x_2 + y_1y_2, x_1y_2 + y_1x_2)$$

für alle $(x_1, y_1), (x_2, y_2) \in A$.

- a) Bestimme die Einheitengruppe $G = A^{\times}$.
- b) Mit der induzierten Topologie ist G eine topologische Gruppe. Was ist die Einskomponente G° ? Gebe einen Normalteiler $N \leq G$ an, der die Bedingungen in Aufgabe 3.3 erfüllt. Was ist der Quotient G/G° ?

Hinweis: Betrachte für a) Produkte der Form $(x, y) \cdot (x, -y)$.

Definition: Sei X ein topologischer Raum. Eine Teilmenge $Y \subseteq X$ heißt G_{δ} Menge, wenn sie der Durchschnitt von abzählbar vielen offenen Mengen ist.

*-Aufgabe

Sei X ein topologischer Raum. Zeige: $A \subseteq X$ ist genau dann Baire-messbar, wenn es eine G_{δ} -Menge B und eine magere Menge M gibt mit $A = B \cup M$.

Abgabe bis: Donnerstag, den 2.11.2017, 8 Uhr im Briefkasten 29