12. Übungszettel zur Vorlesung "Lokalkompakte Gruppen"

WiSe 2017/18 WWU Münster Prof. Dr. Linus Kramer Nils Leder Antoine Beljean

Aufgabe 12.1

Sei X ein Hausdorff-Raum, $\beta\mathbb{N}$ die Čech-Stone-Kompaktifizierung von \mathbb{N} und $\omega\in\beta\mathbb{N}-\mathbb{N}.$ Zeige:

- a) \mathbb{N} ist dicht in $\beta \mathbb{N}$.
- b) Ist $(a_k)_{k\in\mathbb{N}}$ eine konvergente Folge in X, so gilt ω $\lim_k a_k = \lim_k a_k$.

Aufgabe 12.2

Sei (X_n, d_n) eine Folge von metrischen Räumen und $\omega \in \beta \mathbb{N} - \mathbb{N}$. Wir wählen einen Basispunkt $o_n \in X_n$ für jedes $n \geq 0$ und setzen

$$E = \{(x_n)_{n \in \mathbb{N}} \in \prod_{n \in \mathbb{N}} X_n \mid (d_n(x_n, o_n))_{n \in \mathbb{N}} \text{ ist beschränkt}\}.$$

Für $\underline{x},\underline{y} \in E$ setze $d(\underline{x},\underline{y}) = \omega - \lim_{k} d_k(x_k,y_k)$.

- a) Zeige: d ist eine Pseudometrik auf E.
- b) Wir definieren eine Äquivalenzrelation auf E durch

$$\underline{x} \sim y \Leftrightarrow d(\underline{x}, y) = 0$$

und setze $X=\omega$ - $\lim_n(X_n,o_n)=E/\sim$ sowie $d([\underline{x}],[\underline{y}])=d(\underline{x},\underline{y}).$ Zeige: d ist wohldefiniert und (X,d) ein metrischer Raum.

Man nennt (X, d) den *Ultralimes* oder asymptotischen Kegel der X_n (bzgl. ω).

Bitte wenden.

Aufgabe 12.3

Seien G_n für $n \in \mathbb{N}$ Gruppen, l_n eine Längenfunktion auf G_n und $\omega \in \beta \mathbb{N} - \mathbb{N}$. Sei $o_n = e_n$ das Neutralelement in G_n . Setze $d_n(g,h) = l_n(g^{-1}h)$ für $g,h \in G_n$. Zeige: Falls $l_n(aga^{-1}) = l_n(g)$ für alle $g,a \in G_n$ und alle $n \in \mathbb{N}$ gilt, so ist $G = \omega - \lim_n G_n$ eine Gruppe und l(g) = d(e,g) eine Längenfunktion auf G.

Aufgabe 12.4

Bestimme (G, d) in folgenden Beispielen:

a)
$$G_n = \mathbb{Z}^m$$
 für ein $m \in \mathbb{N}$ und $l_n(x_1, \ldots, x_m) = \frac{1}{n}(|x_1| + \ldots + |x_m|)$

b)
$$G_n = \mathbb{Z}/n\mathbb{Z}$$
 und $l_n(x) \in [0, \pi]$ mit $\cos(l_n(x)) = \cos(\frac{2\pi}{n}x)$

*-Aufgabe

Zeige: ω -Limiten sind immer vollständig.

Abgabe bis: Donnerstag, den 18.1.2018, 8 Uhr im Briefkasten 29