10. Übungszettel zur Vorlesung "Lokalkompakte Gruppen"

WiSe 2017/18 WWU Münster Prof. Dr. Linus Kramer Nils Leder Antoine Beljean

Aufgabe 10.1

Sei G eine kompakte Gruppe und E ein Hilbert-G-Modul. Weiter sei $A \in B(E)$ ein beschränkter Operator auf E. Zeige:

a) Es existiert ein eindeutiger beschränkter Operator $A^{\#} \in B(E)$ mit

$$\langle u \mid A^{\#}v \rangle = \int_{G} \langle u \mid gAg^{-1}(v) \rangle dg$$

für alle $u,v\in E$. Weiter ist $A^\#$ eine G-äquivariante Abbildung, d.h. es gilt $A^\#(gu)=gA^\#(u)$ für alle $g\in G,u\in E$.

b) Ist E endlich-dimensional, so gilt für die Spur $tr(A^{\#}) = tr(A)$.

Hinweis: Benutze in b), dass für jede Orthonormalbasis e_1, \ldots, e_n von E gilt $\operatorname{tr}(A) = \sum_{i=1}^n \langle Ae_i \mid e_i \rangle$.

Definition: Seien X, Y topologische Räume und $\mathcal{C}(X, Y)$ die Menge der stetigen Funktionen von X nach Y. Ist $K \subseteq X$ kompakt und $U \subseteq Y$ offen, so sei $V(K, X) = \{f \in \mathcal{C}(X, Y) \mid f(K) \subseteq U\}$. Die Topologie auf $\mathcal{C}(X, Y)$ mit Prä-Basis

$$\mathcal{B} = \{ V(K, U) \mid K \subseteq X \text{ kompakt}, U \subseteq Y \text{ offen} \}$$

heißt die kompakt-offene Topologie auf $\mathcal{C}(X,Y)$. Eine Teilmenge $W\subseteq\mathcal{C}(X,Y)$ ist also genau dann offen bzgl. der kompakt-offenen Topologie, wenn es zu jedem $w\in W$ kompakte Teilmengen $K_1,\ldots,K_r\subseteq X$ und offene Teilmengen $U_1,\ldots,U_r\subseteq Y$ mit $w\in V(K_1,U_1)\cap\ldots\cap V(K_r,U_r)\subseteq W$ gibt.

Aufgabe 10.2

Sei X = [0,1] und $Y = \mathbb{R}$ jeweils mit der üblichen Topologie. Sei $\mathcal{C}(X,Y)$ versehen mit der kompakt-offenen Topologie. Zeige: Eine Folge von stetigen Abbildungen $f_n: X \to Y$ konvergiert genau dann gegen $f \in \mathcal{C}(X,Y)$, wenn die f_n gleichmäßig gegen f konvergieren.

Hinweis: Verwende, dass f gleichmäßig stetig ist.

Bitte wenden.

Aufgabe 10.3

Sei G eine topologische Gruppe und \widehat{G} die Menge aller Morphismen von G nach U(1) versehen mit der von der kompakt-offenen Topologie auf $\mathcal{C}(G,U(1))$ induzierten Teilraumtopologie.

- a) Zeige: Mit punktweiser Multiplikation als Verknüpfung bildet \widehat{G} eine topologische Gruppe.
- b) Bestimme die Gruppen $\widehat{\mathrm{Sym}(3)},\widehat{\mathbb{Z}},\widehat{\mathbb{R}}$ und $\widehat{U(1)}.$

Aufgabe 10.4

Bestimme alle Einparametergruppen $c: \mathbb{R} \to \mathbb{R}^{\times}$.

Abgabe bis: Donnerstag, den 21.12.2017, 8 Uhr im Briefkasten 29