1. Übungszettel zur Vorlesung "Lokalkompakte Gruppen"

WiSe 2017/18 WWU Münster Prof. Dr. Linus Kramer Nils Leder Antoine Beljean

Aufgabe 1.1

Zeige:

- a) Sei $f: \mathbb{R} \to \mathbb{R}$ ein Morphismus der topologischen Gruppe $(\mathbb{R}, +)$. Dann gibt es $r \in \mathbb{R}$ so, dass f(t) = rt für alle $t \in \mathbb{R}$.
- b) Sei $U(1) = \{z \in \mathbb{C} \mid |z| = 1\}$ wie in der Vorlesung und $f: U(1) \to U(1)$ ein Morphismus der topologischen Gruppe $(U(1), \cdot)$. Dann gibt es $n \in \mathbb{Z}$ mit $f(z) = z^n$ für alle $z \in U(1)$.

Aufgabe 1.2

Beweise, dass auf den folgenden topologischen Räumen keine Struktur einer topologischen Gruppe definiert werden kann.

- a) [0,1] mit der von $\mathbb R$ induzierten Teilraumtopologie
- b) \mathbb{N} mit der kofiniten Topologie $\mathcal{T}_{cof} = \{U \subseteq \mathbb{N} \mid U = \emptyset \text{ oder } \#(\mathbb{N} U) < \infty\}$

Aufgabe 1.3

Sei G eine topologische Gruppe und N(e) die Menge der Einsumgebungen. Zeige, dass für jede Teilmenge $X\subseteq G$ der Abschluss \overline{X} von X gegeben ist durch

$$\overline{X} = \bigcap \{ VX \mid V \in N(e) \}.$$

Aufgabe 1.4

Betrachte die topologische Gruppe $(\mathbb{R},+)$ mit der Standardtopologie auf \mathbb{R} . Beweise oder widerlege folgende Aussagen:

- a) Jede diskrete Untergruppe von $(\mathbb{R}, +)$ ist zyklisch.
- b) Jede endlich erzeugte Untergruppe von $(\mathbb{R}, +)$ ist diskret.

Abgabe bis: Donnerstag, den 19.10.2017, 8 Uhr im Briefkasten 29