Locally Compact Groups Sheet 11

Hand in: Friday January 17, 2025 after class in letterbox No 4.

We put $\mathbb{T} = \mathrm{U}(1) = \{z \in \mathbb{C} \mid |z| = 1\}$. This is a compact abelian group, the 1-torus.

Problem 1.

Let C be a finite cyclic group. Show that $A = \text{Hom}(C, \mathbb{T})$ is a cyclic group isomorphic to C.

Hint. Let c be a generator of C. A homomorphism $f: C \to \mathbb{T}$ is uniquely determined by f(c), and the order of f(c) divides the order of c.

Problem 2.

Show that the only subgroup of \mathbb{T} which is contained in the open set $U = \{z \in \mathbb{T} \mid \text{Re}(z) > 0\}$ is the trivial group $\{1\}$.

Problem 3.

Let A be a discrete abelian group. Show that $\text{Hom}(A, \mathbb{T})$, viewed as a subset of \mathbb{T}^A , is a compact group.

Problem 4.

Let B be a compact abelian group. We endow the group $\operatorname{Mor}(B,\mathbb{T})$ of morphisms $f: B \to \mathbb{T}$ with the metric $d(f,h) = \max\{|f(b)-h(b)| \mid b \in B\}$. Show that the topology determined by d on $\operatorname{Mor}(B,\mathbb{T})$ is discrete.

Hint. Use Problem 11.2.

Bonus Problem 1.

Let $m \in \mathbb{N}$. Show that every profinite subgroup of \mathbb{T}^m is finite.