Locally Compact Groups Sheet 7

Hand in: Friday November 29, 2024 after class in letterbox No 4.

Let X be a nonempty set and let G be a group. A (left) action of G on X is a homomorphism $h: G \to \operatorname{Sym}(X)$. For $g \in G$ and $x \in X$ one writes g(x) = h(g)(x) for short. The stabilizer of $x \in X$ is the subgroup $G_x = \{g \in G \mid g(x) = x\}$. The G-orbit of $x \in X$ is the subset $G(x) = \{g(x) \mid g \in G\} \subseteq X$.

Problem 1.

Show that $G_{a(x)} = aG_xa^{-1}$, for all $x \in X$ and $a \in G$. Show that $\bigcap_{x \in X} G_x$ is a normal subgroup of G. (This subgroup is called the *kernel* of the action.)

Problem 2.

Show that G(y) = G(x) holds for all $y \in G(x)$. Conclude that G-orbits are either disjoint or equal. Show also that there is a bijection $G/G_x \to G(x)$ that maps gG_x to g(x).

Problem 3.

Let $H \subseteq G$ be a subgroup and let $x \in X$. Show that H(x) = G(x) holds if and only if $G_x H = G$.

Problem 4.

Let G = X be a group, and put $g(x) = gxg^{-1}$, for $g, x \in G$. Show that this is a left action of G on X and determine the kernel of this action. Conclude that a finite group of prime power order $|G| = p^n$ with $n \ge 1$ has a nontrivial center.

Hint. What are the possible sizes of G-orbits under this action?

Bonus Problem 1.

Let $L \subseteq \mathbb{Z}_p$ be a subgroup of finite index $[\mathbb{Z}_p : L] = m \ge 2$. Show that $m = p^n$ for some $n \ge 1$ and that L is open.