Locally Compact Groups Sheet 5

Hand in: Friday November 15, 2024 after class in letterbox No 4.

We consider a set $X \neq \emptyset$ and the symmetric group $\operatorname{Sym}(X)$ consisting of all bijective maps $f: X \to X$. Let $G \subseteq \operatorname{Sym}(X)$ be a subgroup and let $x \in X$. The G-stabilizer of x is $G_x = \{g \in G \mid g(x) = x\} \subseteq G$ and the G-orbit of x is $G(x) = \{g(x) \mid g \in G\} \subseteq X$. We view $\operatorname{Sym}(X)$ as a subset of X^X , with the product topology (the topology of

We view Sym(X) as a subset of X^X , with the product topology (the topology of pointwise convergence).

Problem 1.

Let $G \subseteq \operatorname{Sym}(X)$ be a subgroup and let $x \in X$. Show that G_x is a subgroup, and that G_x is closed and open in G.

Problem 2.

Show that a subgroup $G \subseteq \operatorname{Sym}(X)$ is closed if and only if some point stabilizer G_x is closed in $\operatorname{Sym}(X)$.

Problem 3.

Let $G \subseteq \operatorname{Sym}(X)$ be a subgroup. Show that the map $G \times X \to X$, $(g, x) \mapsto g(x)$ is continuous. Conclude that G is totally disconnected. Show that every G-orbit is finite if G has compact closure in $\operatorname{Sym}(X)$.

Problem 4.

Let $G \subseteq \operatorname{Sym}(X)$ be a subgroup and suppose that every $x \in X$ has a finite G-orbit. Show that G has compact closure in $\operatorname{Sym}(X)$.

A relational structure $M = (X, \mathcal{R})$ consists of a (nonempty) set X, the universe, and a (possibly infinite) set \mathcal{R} of subsets $R \subseteq X^n$, for $n \ge 1$, the n-ary relations. We let $\operatorname{Sym}(X)$ act on X^n via $g(x_1, \ldots, x_n) = (g(x_1), \ldots, g(x_n))$. The automorphism group $\operatorname{Aut}(M)$ consists of all $g \in \operatorname{Sym}(X)$ with g(R) = R for all $R \in \mathcal{R}$.

Bonus Problem 1.

Show that the automorphism group of a relational structure $M=(X,\mathcal{R})$ is closed in $\mathrm{Sym}(X)$.

Hint. Show that the complement of Aut(M) is open.

Bonus Problem 2.

Prove Cameron's Theorem: If $G \subseteq \operatorname{Sym}(X)$ is closed, then there is a relational structure $M = (X, \mathcal{R})$ with $G = \operatorname{Aut}(M)$.

Hint. Consider the set \mathcal{R} of all G-orbits $R = G(x_1, \dots, x_n) \subseteq X^n$, for $n \ge 1$.