Locally Compact Groups Sheet 3

Hand in: Thursday October 31, 2024 before class in letterbox No 4.

Problem 1.

Let $f: G \to K$ be a morphism of topological groups and let $N \subseteq G$ be a normal subgroup which is contained in $\ker(f)$. Show that f factors uniquely as

$$G \xrightarrow{f} K$$

$$\downarrow q \qquad \qquad \downarrow \bar{f}$$

$$G/N$$

with a morphism \bar{f} , where q(g) = gN. Show that \bar{f} is open if and only if f is open. Hint. You may use the homomorphism theorem from algebra. What do you need to prove?

Problem 2.

Let G be a Hausdorff topological group and let $K \subseteq G$ be a compact subgroup. Show that the map $q: G \to G/K$ is closed.

Problem 3.

A sequence $(g_k)_{k\in\mathbb{N}}$ in a Hausdorff topological group G is called a *right Cauchy sequence* if for every identity neighborhood $V\subseteq G$ there is an $m\in\mathbb{N}$ such that $g_jg_k^{-1}\in V$ holds for all $j,k\geq m$. Show that a metrizable topological group is Weil complete if and only if every right Cauchy sequence converges.

Problem 4.

Let I be an infinite set with the discrete topology. Consider the monoid $S = I^I$ consisting of all maps $f: I \to I$, with the product topology. (This is the topology of pointwise convergence.) Let $\operatorname{Sym}(I) \subseteq S$ denote the group of all bijective maps.

- (i) Show that multiplication $(f, h) \mapsto f \circ h$ is continuous on S.
- (ii) Show that inversion is continuous on Sym(I) and that Sym(I) is therefore a topological group.

Hint. For $f \in I^I$ a neighborhood basis of f in S consists of the sets $N(f, E) = \{h \in I^I \mid f|_E = h|_E\}$, where E varies over all finite subsets of I.

Bonus Problem 1.

(Notation as in Problem 3.4) Show that the closure of $\mathrm{Sym}(I)$ in S is the set of all injective maps $f:I\to I$. Conclude that $\mathrm{Sym}(\mathbb{N})$ is not Weil complete.

Hint: Show first that the set of non-injective maps $f: I \to I$ is open.

Note: $\operatorname{Sym}(\mathbb{N})$ is what is called a *Polish group*: a second countable completely metrizable topological group.