Locally Compact Groups Sheet 2

Hand in: Friday October 25, 2024 before class in letterbox No 4.

Problem 1.

The set $H = \{2^k \mid k \in \mathbb{Z}\}$ is a discrete subgroup of the multiplicative group of the reals which is not closed in \mathbb{R} . Why does this not contradict §1.9 Cor. B?

Problem 2.

Let $H \subseteq \mathbb{R}$ be a discrete subgroup. Show that $H = r\mathbb{Z}$ for a unique real $r \ge 0$. Hint. If $H \ne \{0\}$ put $r = \inf\{h \in H \mid h > 0\}$ and show that $r \in H$.

Problem 3.

Let $H \subseteq \mathbb{R}$ be a non-discrete subgroup. Show that H is dense in \mathbb{R} .

Conclude that $\mathbb{Z} + r\mathbb{Z} \subseteq \mathbb{R}$ is dense if r is not rational.

Hint. Show that for every integer $m \ge 1$ here is some $h_m \in H$ with $0 < h_m \le \frac{1}{m}$. Then show that for every real number r and every $\varepsilon > 0$ there are integers k, ℓ with $|r - kh_{\ell}| \le \varepsilon$.

Problem 4.

Let G be a topological group and let $\overline{\mathcal{N}}$ be a neighborhood basis of the identity element e. Let $X \subseteq G$ be a subset. Show that $\overline{X} = \bigcap \{VX \mid V \in \mathcal{N}\}.$

Bonus Problem 1.

Show that every morphism $f: \mathrm{U}(1) \to \mathrm{U}(1)$ is of the form $f(z) = z^k$, for some unique $k \in \mathbb{Z}$.

Hint. Consider the morphism $p: \mathbb{R} \to \mathrm{U}(1), \ p(t) = \exp(it)$ and use Exercise 1.3

Bonus Problem 2.

Let $H \subseteq \mathbb{R}$ be a connected nontrivial subgroup. Show that $H = \mathbb{R}$.