Locally Compact Groups Sheet 1

Hand in: Friday October 18, 2024 before class in letterbox No 4.

Problem 1.

Let G, K be topological groups and let $f: G \to K$ be a group homomorphism. Show that f is continuous if it is continuous at some point $a \in G$.

Problem 2.

We consider the additive group $(\mathbb{R}, +)$ with the usual topology. Then \mathbb{R} is a topological group. Let $f : \mathbb{R} \to \mathbb{R}$ be a morphism. Show that there is a unique real number r such that f(x) = rx holds for all $x \in \mathbb{R}$.

Hint. Show first that there is a unique $r \in \mathbb{R}$ such that f(x) = rx holds for all $x \in \mathbb{Q}$.

Problem 3.

Let $h : \mathbb{R} \to \mathrm{U}(1)$ be a morphism of topological groups, where $\mathrm{U}(1) = \{\exp(it) \mid t \in \mathbb{R}\} \subseteq \mathbb{C}$ is the circle group, and $i = \sqrt{-1}$. Show that there is a real number r such that $h(x) = \exp(irx)$ holds for all $x \in \mathbb{R}$.

Hint. Consider the universal covering $p: \mathbb{R} \to \mathrm{U}(1)$, with $p(t) = \exp(it)$. Show then that the unique lift \tilde{h} of h with initial condition $\tilde{h}(0) = 0$ is a morphism. Use for this that p is a morphism.

If you are not familiar with the complex exponential function you can put $\mathbb{C} = \mathbb{R}^2$, $U(1) = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ and $\exp(it) = (\cos(t), \sin(t))$ in cartesian coordinates.

Problem 4.

Let G be a topological group, let $a \in G$ and let $U \subseteq G$ be a neighborhood of a.

- (a) Show that there is an open neighborhood V of e such that $VVa \subseteq U$.
- (b) Show next that Va and VVa are open neighborhoods of a.
- (c) Show next that $\overline{Va} \subseteq VVa$.
- (d) Conclude that G is a regular space (T_3) if it is a T_1 -space.

Bonus Problem 1.

No topological group is homeomorphic to the unit interval [0,1].