Prof. Dr. L. Kramer PD Dr. K. Halupczok Dipl.-Math. O. Varghese

6. Hausaufgabenblatt zur Linearen Algebra I

(Abgabe: bis Freitag 29.11.2013, 8:15 Uhr in die Zettelkästen im Hörsaalgebäude)

Stichworte zur Vorbereitung: Potenzmenge, Gruppen, abelsche Gruppen, Aufgabe 5.4, Ringe, kommutative Ringe, Körper, (\mathbb{Z}/m , +), Induktionsprinzip.

Aufgabe 6.1

Sei M eine nichtleere Menge und $\mathcal{P}(M)$ die Potenzmenge von M. Wir definieren auf $\mathcal{P}(M)$ wie folgt eine Verknüpfung

$$+: \mathcal{P}(M) \times \mathcal{P}(M) \to \mathcal{P}(M)$$

 $(X, Y) \mapsto (X \cup Y) - (X \cap Y)$

für $X, Y \in \mathcal{P}(M)$. Zeigen Sie die folgenden Aussagen:

- i) $(\mathcal{P}(M), +)$ ist eine Gruppe.
- ii) $(\mathcal{P}(M), +)$ ist abelsch. *Hinweis:* Aufgabe 5.4.

Aufgabe 6.2

Sei R ein Ring. Zeigen Sie, dass das Zentrum

$$Z(R) := \{a \in R \mid ab = ba \text{ für alle } b \in R\}$$

ein kommutativer Ring ist.

Aufgabe 6.3

i) Sei K ein beliebiger Körper. Zeigen Sie, dass die folgende Gleichung

$${x \in K \mid x^2 = 1} = {-1, 1}$$

in *K* gilt.

ii) Bestimmen Sie die Menge $\{\bar{a} \in \mathbb{Z}/8 \mid \bar{a}^2 = \bar{1} \}$.

Aufgabe 6.4

Definition: Eine Teilmenge $M \subseteq \mathbb{R}$ heißt nach unten (oben) beschränkt, falls es ein $s \in \mathbb{R}$ existiert, so dass für alle $m \in M$ gilt: $s \le m$ (bzw. $m \le s$). Das Element s heißt dann eine untere (obere) Schranke von M.

Das Element s heißt kleinstes (größtes) Element von M, falls s eine untere (obere) Schranke von M ist und $s \in M$ gilt.

- i) Zeigen Sie, dass jede nichtleere nach unten (oben) beschränkte Teilmenge aus ℤ ein kleinstes (größtes) Element besitzt.
- ii) Gilt die Aussage auch für nichtleere nach unten (oben) beschränkte Teilmengen aus \mathbb{Q} ?