EXERCISE SHEET 9

Exercise 1. Let $F : \mathcal{C} \to \mathcal{D}$ be a functor between two categories.

Prove or disprove the following assertion: "the image of F in D is a subcategory of D".

Exercise 2. Write the following groups as amalgamated products:

 $\begin{array}{ll} \text{I.} & \mathsf{G} = \left\langle x,y \mid x^3y^{-3}, \; y^6 \right\rangle; \\ \text{2.} & \mathsf{H} = \left\langle x,y \mid x^{30}, \; y^{70}, \; x^3y^{-5} \right\rangle. \end{array}$

Exercise 3. Show that there exist uncountably many groups that are generated by two elements and *not* finitely presented.

Exercise 4. Let G be a group and A, $B \leq G$ two subgroups. Denote $C := A \cap B$.

Show that $G \simeq A*_C B$ if and only if: all $g \in G \setminus C$ can be written as a product $g = g_1 \cdots g_n$ with $g_i \in G_i \setminus C$ where

$$G_i \in \{A, B\}$$
 and $G_i \neq G_{i+1}$

and all such products are different from 1.

Bonus exercise. Let G, H be two groups and $\alpha : G \to H$ be an epimorphism. Assume that $H := H_1 *_{H_3} H_2$ and let $G_i := \alpha^{-1}(H_i)$ for i = 1, 2, 3. Show that $G := G_1 *_{G_3} G_2$. *Hint: Use the previous exercise.*

Please hand in your solutions on the morning of December, 16th before the lecture (letterbox 162 or electronically in the Learnweb).