EXERCISE SHEET 6

Exercise 1. Let F_2 denote the free group on $X := \{a, b\}$.

- 1. Show that $\{aba^{-1}, ab\}$ is a basis for F_2 .
- 2. Find an element $w \in F_2 \setminus \{e\}$ which is not contained in a basis of F_2 .

Exercise 2. Let G be a group and let $N \subseteq G$ be a normal subgroup. Show that G is finitely generated if both G/N and N are finitely generated.

Exercise 3 (Inner and outer automorphism). Let G be a group and for $g \in G$ denote by γ_g the automorphism $\gamma_g : x \mapsto gxg^{-1}$.

- The inner automorphism group of G is $Inn(G) := \{\gamma_g \mid g \in G\}$.
 - 1. Determine the kernel of the homomorphism

$$\Phi: \ \begin{cases} G & \to \mathrm{Inn}(G), \\ g & \mapsto \gamma_g. \end{cases}$$

- 2. Show that Inn(G) is a normal subgroup of Aut(G).
- The quotient Aut(G)/Inn(G) =: Out(G) is the outer automorphism group of G.
- 3. Determine the group $Out(\mathbb{Z}^m)$.

Exercise 4. Let $G := \langle x_n, n = 1, 2, 3, ... \mid x_{n-1}^{-1} x_n^n, n = 1, 2, 3, ... \rangle$. Show that $G \simeq (\mathbb{Q}, +)$. *Hint: Put* $\alpha(x_n) = \frac{1}{n!}$.

Bonus exercise. Prove the following isomorphisms:

- I. $\langle a, b | a^{-1}ba^{-2} \rangle \simeq \mathbb{Z}$.
- 2. $\langle a, b \mid a^5, b^3, [a, b] \rangle \simeq \mathbb{Z}/15\mathbb{Z}.$

Please hand in your solutions on the morning of November, 25th before the lecture (letterbox 162 or electronically in the Learnweb).