EXERCISE SHEET 3

Exercise 1 (Isomorphisms). Let G be a group and consider two subgroups K and N where N is normal in G.

- Show that the homomorphism $G \to G/N$ induces an isomorphism:

$$K/(K \cap N) \xrightarrow{\sim} (KN)/N.$$

- Show that if K is normal in G and $N\subseteq K,$ then the homomorphism $G/N\to G/K$ induces an isomorphism:

$$\frac{G/N}{K/N} \xrightarrow{\sim} G/K.$$

• Show that if K is normal in G and if $K \cap N = \{e\}$ then the following map is an isomorphism:

$$egin{cases} {\mathsf{K}} imes {\mathsf{N}} & o {\mathsf{KN}}, \ {(\mathsf{k},\mathsf{n})} & \mapsto {\mathsf{kn}}. \end{cases}$$

• If H is another subgroup in G, show that G = KH if and only if H acts transitively on G/K.

Exercise 2 (Free product). Let G and H be two non-trivial groups. Show that G*H is infinite.

Exercise 3 (Hopfian groups). Show that $(\mathbb{Q}, +)$ is a Hopfian group.

Exercise 4 (Free products). Let $G = \coprod_{i \in I} G_i$ be a free product.

- Show that for every $i\in I,$ there exists a homomorphism $p_i:G\to G_i$ such that $p_i\circ\iota_i=id_{G_i}.$
- Show that there exists a homomorphism $\varphi : \coprod_{i \in I} G_i \to \prod_{i \in I} G_i$ such that $pr_i \circ \varphi \circ \iota_i = id_{G_i}$ for all $i \in I$.

Bonus exercise (Burnside's Lemma). Let G be a finite group acting on a space X. For all $g \in G$, denote $X^g := \{x \in X \mid g \cdot x = x\}$ the fixed points set of g.

- 1. Prove that $\sum_{x \in X} \#G_x = \sum_{g \in G} \#X^g$.
- 2. Show that $\sum_{x \in X} \frac{1}{\#G(x)} = \#(G \setminus X)$.
- 3. Deduce that

$$#(G \setminus X) = \frac{1}{\#G} \sum_{g \in G} \#X^g.$$

Please hand in your solutions on the morning of November, 4th before the lecture (letterbox 162 or electronically in the Learnweb).