ExERCISE SHEET 2

Exercise I (Generating sets and group homomorphisms). Let G be a finitely generated group and A a finite group.
I. Let S be a finite generating set of G. Show that a homomorphism from G to A is uniquely determined by its restriction to S.
2. Show that $\operatorname{Hom}(G, A)$ is a finite set.
3. Let $n>1$. Show that G has a only a finite number of subgroups of index n.

Definition o.r

We say that an action of a group G on a set X is 2 -transitive if G acts transitively on the set $\left\{(x, y) \in X^{2} \mid x \neq y\right\}$, that is to say if for all $(x, y),\left(x^{\prime}, y^{\prime}\right) \in X^{2}$ with $x \neq y$ and $x^{\prime} \neq y^{\prime}$, there exists a g in G such that $g \cdot x=x^{\prime}$ and $g \cdot y=y^{\prime}$.

Exercise 2 (Cayley's theorem, 2-transitivity).
I. Show that every group G of order n is isomorphic to a subgroup of the symmetric group $\operatorname{Sym}(n)$.
Now let G be the symmetry group of a non-square rectangle (see Figure I).
2. Determine the order of G.
3. Let $\varphi: G \rightarrow \operatorname{Sym}(4)$ be the group homorphism induced by the action of G on the corner set induced group homomorphism.
a) What is the image of G under φ ?
b) Does G act transitively on the corners?
c) Does G act 2-transitively?

Figure I

Please, turn the page

Exercise 3 (Rationals). Show that $(\mathbb{Q},+)$ is not finitely generated.
Exercise 4 (Normal subgroups). Let $\mathrm{K}, \mathrm{N} \leqslant \mathrm{G}$ be subgroups of G .
I. Show that if N is normal in G then KN is a subgroup of G .
2. Show that KN is normal in G if N and K are normal.
3. Let $\mathrm{H} \leqslant \mathrm{G}$ be a subgroup. Determine the kernel of the action

$$
\begin{cases}\mathrm{G} \times \mathrm{G} / \mathrm{H} & \rightarrow \mathrm{G} / \mathrm{H}, \\ (\mathrm{~g}, \mathrm{aH}) & \mapsto \mathrm{gaH} .\end{cases}
$$

Bonus exercise (Double cosets). Let K, H be subgroups in G. A double coset is a subset of the form

$$
K a H=\{k a h \mid k \in K, h \in H\}, \quad \text { for } a \in G .
$$

Show that double cosets partition G. Do all double cosets have the same number of elements?

Hint: Let $K \times H$ act on G.

Please hand in your solutions on the morning of October 28 before the lecture (letterbox 162 or electronically in the Learnweb).

