Exercise sheet 10

Definition I

Let X be a topological space and $A \subseteq X$ a subspace. A continuous map $r: X \rightarrow X$ is called a retraction from X to A if $r(X)=A$ and $r(a)=a$ for all $a \in A$. A homotopy $F: X \times[0,1] \rightarrow X$, $(x, s) \mapsto F_{s}(x)$ between $F_{0}=i d_{X}$ and a retraction F_{1} from X to A is called a deformation retract from X to A if $F_{s}(a)=a$ holds for all $a \in A$ and all $s \in[0,1]$.

Exercise I . Let X be a topological space and $\mathrm{A} \subseteq \mathrm{X}$ a subspace. Let $\mathrm{a} \in \mathcal{A}$. Denote by $\imath: A \rightarrow X$ the inclusion map. Show the following assertions:
I. If there exists a retraction r from X to A then the induced homomorphism $t_{*}: \pi_{1}(A, a) \rightarrow$ $\pi_{1}(X, a)$ is injective.
2. If there exists a deformation retract from X to A, then the induced homomorphism $\iota_{*}: \pi_{1}(A, a) \rightarrow \pi_{1}(X, a)$ is an isomorphism.
Exercise 2. Calculate $\pi_{1}\left(\mathbb{R}^{2} \backslash\{0\},(1 ; 0)\right)$.
Hint: Show that $\mathbb{R}^{2} \backslash\{0\}$ is homotopically equivalent to the 1 -dimensional sphere \mathbb{S}^{1}.
Exercise 3. Denote by $\|\cdot\|$ the 2 -norm in \mathbb{R}^{n}. Let $D^{n}:=\left\{x \in \mathbb{R}^{n},\|x\| \leqslant 1\right\}$ be the n-dimensional closed unit ball and $S^{n}:=\left\{x \in \mathbb{R}^{n},\|x\|=1\right\}=\partial D^{n+1}$ the n-dimensional sphere. Prove or disprove the following statements:
I. There exists a retraction $r_{1}: \mathbb{R}^{3} \rightarrow A$ on a subset $A \subseteq \mathbb{R}^{3}$ which is homeomorphic to S^{1}.
2. There exists a retraction $r_{2}: \mathbb{R}^{2} \rightarrow\{(t, 0) \mid t \in \mathbb{R}\}$.
3. Let X be a topological space and $Y \subseteq X$ a subspace and $y \in Y$. If $\pi_{1}(X, y)$ is free and $\pi_{1}(Y, y) \neq\{1\}$ is finite then there exists no retraction $r_{3}: X \rightarrow Y$.
4. There exists a retraction $r_{4}: S^{1} \times D^{2} \rightarrow S^{1} \times S^{1}$ where $S^{1} \times S^{1}$ is the boundary of the solid torus $S^{1} \times D^{2}$, namely $S^{1} \times S^{1}=\partial\left(S^{1} \times D^{2}\right)$.

Exercise 4. Let G be a countable group. Show that there exists a group G^{*} which contains G as a subgroup and in which all elements of the same order are conjugate to each other.
Bonus exercise. Let G be a finitely generated group. Show that the following are equivalent:
I. G contains uncountably many normal subgroups.
2. G has uncountably many, pairwise non-isomorphic quotients.

Please hand in your solutions on the morning of December, 23rd before the lecture (letterbox 162 or electronically in the Learnweb).

