EXERCISE SHEET 10

Definition 1

Let X be a topological space and $A \subseteq X$ a subspace. A continuous map $r : X \to X$ is called a *retraction* from X to A if r(X) = A and r(a) = a for all $a \in A$. A homotopy $F : X \times [0, 1] \to X$, $(x, s) \mapsto F_s(x)$ between $F_0 = id_X$ and a retraction F_1 from X to A is called a *deformation retract* from X to A if $F_s(a) = a$ holds for all $a \in A$ and all $s \in [0, 1]$.

Exercise 1. Let X be a topological space and $A \subseteq X$ a subspace. Let $a \in A$. Denote by $\iota : A \to X$ the inclusion map. Show the following assertions:

- I. If there exists a retraction r from X to A then the induced homomorphism $\iota_*: \pi_1(A, \mathfrak{a}) \to \pi_1(X, \mathfrak{a})$ is injective.
- 2. If there exists a deformation retract from X to A, then the induced homomorphism $\iota_*: \pi_1(A, \mathfrak{a}) \to \pi_1(X, \mathfrak{a})$ is an isomorphism.

Exercise 2. Calculate π_1 ($\mathbb{R}^2 \setminus \{0\}, (1; 0)$).

Hint: Show that $\mathbb{R}^2 \setminus \{0\}$ is homotopically equivalent to the 1-dimensional sphere \mathbb{S}^1 .

Exercise 3. Denote by $\|\cdot\|$ the 2-norm in \mathbb{R}^n . Let $D^n := \{x \in \mathbb{R}^n, \|x\| \le 1\}$ be the n-dimensional closed unit ball and $S^n := \{x \in \mathbb{R}^n, \|x\| = 1\} = \partial D^{n+1}$ the n-dimensional sphere. Prove or disprove the following statements:

- 1. There exists a retraction $r_1:\mathbb{R}^3\to A$ on a subset $A\subseteq\mathbb{R}^3$ which is homeomorphic to $S^1.$
- 2. There exists a retraction $r_2 : \mathbb{R}^2 \to \{(t, 0) | t \in \mathbb{R}\}.$
- 3. Let X be a topological space and $Y \subseteq X$ a subspace and $y \in Y$. If $\pi_1(X, y)$ is free and $\pi_1(Y, y) \neq \{1\}$ is finite then there exists no retraction $r_3 : X \to Y$.
- 4. There exists a retraction $r_4 : S^1 \times D^2 \to S^1 \times S^1$ where $S^1 \times S^1$ is the boundary of the solid torus $S^1 \times D^2$, namely $S^1 \times S^1 = \partial (S^1 \times D^2)$.

Exercise 4. Let G be a countable group. Show that there exists a group G* which contains G as a subgroup and in which all elements of the same order are conjugate to each other.

Bonus exercise. Let G be a finitely generated group. Show that the following are equivalent:

- 1. G contains uncountably many normal subgroups.
- 2. G has uncountably many, pairwise non-isomorphic quotients.

Please hand in your solutions on the morning of December, 23rd before the lecture (letterbox 162 or electronically in the Learnweb).