Prof. Dr. L. Kramer Dr. Rupert McCallum Antoine Beljean

3.Übung zur Vorlesung Gebäude

Please hand in your solutions on the morning of Friday 27 April before the lecture.

Aufgabe 3.1 (1. Coxeter Systems)

Let (W, I) be a Coxeter system.

(a) (2 marks) Show that if $w \in W$ and $i \in I$ then $l(iw) = l(w) \pm 1$.

(b) (4 marks) Suppose that W is finite. Show that the Coxeter group W has an element w_0 of maximal length and that

 $l(w_0) = l(w) + l(w^{-1}w_0)$ for all $w \in W$.

Aufgabe 3.2 (2. Parabolic Subgroups)

Let (W, I) be a Coxeter system. Let $J, K \subseteq I$ be two sets, and let $W_J = \langle J \rangle$ and $W_K = \langle K \rangle$ denote the subgroups generated by J and K, respectively. Show that:

(a) (2 marks) The length of a reduced decomposition of an element in W_J using elements of J is equal to the length of a reduced decomposition of the same element using elements of I. (b) (2 marks) Let $i \in I \setminus J$ and $w \in W_J$, show that l(iw) = l(w) + 1. (c) (2 marks) Show that $W_J \cap W_K = W_{J\cap K} = \langle J \cap K \rangle$. (Hint: use induction on the word length and (b)).

Aufgabe 3.3 (3. Folding Condition)

(4 marks) Suppose that W is a group with a generating set I of elements of order 2. The folding condition (**F**) says:

(F) Let $w \in W$, and $i, j \in I$ be such that l(iw) = l(w) + 1 and l(wj) = l(w) + 1, then either l(iwj) = l(w) + 2 or iwj = w.

Show that $(\mathbf{E}) \Rightarrow (\mathbf{F})$ and $(\mathbf{F}) \Rightarrow (\mathbf{D})$, in particular (\mathbf{F}) is satisfied by a Coxeter system.

(Therefore the three conditions (\mathbf{D}) , (\mathbf{E}) , and (\mathbf{F}) are equivalent. A group with a generating set of involutions which satisfies any one of these three equivalent conditions is in fact a Coxeter group.)