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3.Übung zur Vorlesung Gebäude

Please hand in your solutions on the morning of Friday 27 April before the lecture.

Aufgabe 3.1 (1. Coxeter Systems)

Let (W, I) be a Coxeter system.
(a) (2 marks) Show that if w ∈W and i ∈ I then l(iw) = l(w)± 1.
(b) (4 marks) Suppose that W is finite. Show that the Coxeter group W has an element w0 of
maximal length and that

l(w0) = l(w) + l(w−1w0) for all w ∈W.

Aufgabe 3.2 (2. Parabolic Subgroups)

Let (W, I) be a Coxeter system. Let J,K ⊆ I be two sets, and let WJ = 〈J〉 and WK = 〈K〉
denote the subgroups generated by J and K, respectively. Show that:

(a) (2 marks) The length of a reduced decomposition of an element in WJ using elements of J
is equal to the length of a reduced decomposition of the same element using elements of I.
(b) (2 marks) Let i ∈ I \ J and w ∈WJ , show that l(iw) = l(w) + 1.
(c) (2 marks) Show that WJ ∩WK = WJ∩K = 〈J ∩ K〉. (Hint: use induction on the word
length and (b)).

Aufgabe 3.3 (3. Folding Condition)

(4 marks) Suppose that W is a group with a generating set I of elements of order 2. The
folding condition (F) says:

(F) Let w ∈ W , and i, j ∈ I be such that l(iw) = l(w) + 1 and l(wj) = l(w) + 1, then either
l(iwj) = l(w) + 2 or iwj = w.

Show that (E)⇒ (F) and (F)⇒ (D), in particular (F) is satisfied by a Coxeter system.

(Therefore the three conditions (D), (E), and (F) are equivalent. A group with a generating set
of involutions which satisfies any one of these three equivalent conditions is in fact a Coxeter
group.)


