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2.Übung zur Vorlesung Gebäude

Please hand in your solutions on the morning of Friday 20 April before the lecture.

Aufgabe 2.1 (1. Realisations of Simplicial Complexes)

(6 marks)

Let X be a topological space and let {Ui}i∈I be an open cover of X. As discussed in the
lectures, the nerve N of the open cover {Ui}i∈I is a simplicial complex.

We say that a family of continuous functions {fi}i∈I from X to the unit interval [0, 1] is a
partition of unity subordinate to the open cover {Ui}i∈I if the following hold:

(i) for each point x ∈ X there is a neighbourhood of x in which all but finitely many of the fi
are zero;
(ii) Σi∈Ifi(x) = 1 for all x ∈ X;
(iii) for each i ∈ I the support of fi, defined to be the closure of {x | f(x) 6= 0} is contained in
Ui.

Show how to construct from a given partition of unity subordinate to {Ui}i∈I a continuous
mapping from X to the geometric realisation of the nerve N .

Aufgabe 2.2 (2. The dihedral groups)

(4 marks)

Describe the centre of the dihedral group Dm for each possible value of m including ∞. Describe
the conjugacy classes in Dm for each possible value of m including ∞.

Aufgabe 2.3 (3. Free Groups)

Suppose that X is a set, and that FX is a free group over X.

(a) (2 marks) Show that the free group FX has the universal property described in the lectures.
(b) (4 marks) Suppose that m and n are distinct positive integers, and that X is a set of
cardinality m and Y is a set of cardinality n. Prove that FX is not isomorphic to FY . (Hint:
Consider their abelianisations.)
(*) Look up the definition of adjoint functors, for example in the (English) Wikipedia, or in
the math library. Show that the functor F : Set → Group which sends a set X to the free
group over X is left adjoint to the forgetful functor G : Group → Set.


