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9.Übung zur Vorlesung Gebäude

Please hand in your solutions on the morning of Friday 15 June before the lecture.

Aufgabe 9.1 (1. The Tits System of GLm+1(K))

Let K be a field. Let G = GLm+1(K) and let B be the subgroup of upper triangular matrices
with respect to a fixed basis, and let N be the subgroup of monomial matrices (matrices with
exactly one entry in each column and row different from 0), and let T be the subgroup of
diagonal matrices. Denote by Ij the identity matrix of size j. Then for 1 ≤ i ≤ m let

si =


Ii−1

0 1
−1 0

Im−i

 , Gi =


 Ii−1

A
Im−i

 : A ∈ GL2(K)


Let S = {siT : 1 ≤ i ≤ m} ⊂ N/T . Then (G,B,N, S) is a Tits system. The proof in the
lecture used the following two steps - prove these:
(a) Write Bn = n−1Bn for an element n ∈ N . Let w = nT ∈W ∼= N/T ∼= Sym(m + 1). Then
show for all 1 ≤ i ≤ m:

Bn ∩Gi =






Ii−1

∗ ∗
0 ∗

Im−i


w(i) < w(i + 1)




Ii−1

∗ 0
∗ ∗

Im−i


w(i) > w(i + 1)


(b) Conclude that Gi = (B ∩Gi)(B

n ∩Gi) ∪ (B ∩Gi)si(B
n ∩Gi).

Aufgabe 9.2 (2. Parabolic Subgroups)

Let (G,B,N, S) be a Tits System.

(a) Show that for all w ∈W we have 〈BwB〉 = 〈B ∪ wBw−1〉.
(b) For all J ⊂ I let WJ = 〈J〉 and PJ = BWJB. Show that each parabolic subgroup PJ is
self-normalising, i.e. NG(PJ) = PJ . Also show that no two distinct parabolic subgroups are
conjugate.


