8. Übungszettel zur Vorlesung "Funktionentheorie"

SoSe 2021 WWU Münster Prof. Dr. Linus Kramer Lara Beßmann Daniel Keppeler

Aufgabe 8.1

Seien $f: \mathbb{C} \to \mathbb{C}$ und $g: \mathbb{C} \to \mathbb{C}$ holomorphe Funktionen mit $|f(z)| \le |g(z)|$ für alle $z \in \mathbb{C}$. Zeigen Sie, dass ein $\lambda \in \mathbb{C}$ existiert mit $f(z) = \lambda g(z)$ für alle $z \in \mathbb{C}$.

Aufgabe 8.2

Sei $f: \mathbb{C} \to \mathbb{C}$ holomorph und nicht konstant. Zeigen Sie mit dem Satz von Liouville, dass kein $c \in \mathbb{C}$ und kein r > 0 existieren mit $B_r(c) \subseteq \mathbb{C} - f(\mathbb{C})$.

Aufgabe 8.3

Beweisen oder widerlegen Sie die folgende Aussage.

Sei $\Omega \subseteq \mathbb{C}$ ein Gebiet und sei $f \colon \Omega \to \mathbb{C}$ holomorph und nicht konstant. Dann hat |f| keine lokalen Minima in Ω .

Aufgabe 8.4

Sei $\Omega=B_r(c)$, sei $f\colon\Omega\to\mathbb{C}$ stetig. Zeigen Sie: wenn für jedes Dreieck $\Delta=\Delta(a,b,c)\subseteq\Omega$ gilt

$$\int_{\partial \Delta} f(z)dz = 0$$

so ist f holomorph.

Hinweis: Zeigen Sie wie im Satz von Morera, dass f eine Stammfunktion F hat.

Abgabe bis: Donnerstag, den 17.06.2021, 8 Uhr online im Learnwebkurs