Endliche Gruppen Blatt 5

Abgabe: 20.11.2025, 08:00 in Briefkasten 5

Aufgabe 1.

Es sei G eine Gruppe und H eine Untergruppe. Zeigen Sie:

- (i) H wirkt auf G durch die Abbildung $H \times G \to G$, $(h,g) \mapsto hg$.
- (ii) Die Bahnen der Wirkung sind genau die Rechtsnebenklassen von H.
- (iii) Aus der Bahnengleichung folgt der Satz von Lagrange (wenn G endlich ist).

Aufgabe 2.

Es sei p eine Primzahl und G eine p-Gruppe, die auf einer endlichen Menge X wirkt. Wir nennen $z \in X$ einen Fixpunkt, wenn gz = z für alle $g \in G$ gilt. Zeigen Sie:

- (i) Wenn p kein Teiler von |X| ist, dann gibt es mindestens einen Fixpunkt.
- (ii) Wenn p ein Teiler von |X| ist, dann gibt es entweder keinen oder mindestens zwei Fixpunkte.

Aufgabe 3.

Es sei $G \times X \to X$ eine transitive Wirkung der Gruppe G auf der Menge X. Weiter sei $u \in X$ und $H \subseteq G$ eine Untergruppe. Zeigen Sie: H wirkt genau dann transitiv auf X, wenn gilt $G = G_uH$.

Aufgabe 4.

Es sei G eine Gruppe mit Normalteilern $M, N \subseteq G$. Zeigen Sie: falls gilt $M \cap N = \{e\}$, so folgt mn = nm für alle $m \in M$, $n \in N$.

*-Aufgabe 5.

Sei G eine Gruppe mit endlichem Erzeugendensystem und A eine endliche Gruppe.

- (a) Zeigen Sie, dass die Menge der Gruppenhomomorphismen
 - $\operatorname{Hom}(G,A):=\{\varphi\colon G\to A\mid \varphi \text{ ist Gruppenhomomorphismus}\}$ endlich ist.
- (b) Sei $n \in \mathbb{N}$, n > 1. Dann hat G nur endlich viele Untergruppen von Index [G:H] = n.

[Hinweis: Für eine Untergruppe $H \subseteq G$ mit [G:H] = n betrachte die Wirkung von G auf den Nebenklassen von H in G und verwende Teil (a).]