Endliche Gruppen Blatt 4

Abgabe: 13.11.2025, 08:00 in Briefkasten 5

Aufgabe 1.

Zeigen Sie: jede Gruppe G der Ordnung $|G| \leq 5$ ist abelsch.

[Hinweis: Sie müssen sich nur im Falle |G|=4 etwas Neues überlegen.]

Aufgabe 2.

Bestimmen Sie für jedes Element a der zyklischen Gruppe $H = \mathbb{Z}/8\mathbb{Z}$ die Ordnung o(a) und den Index $[H : \langle a \rangle]$.

Folgern Sie, dass es keinen Isomorphismus $H \cong G \times K$ geben kann, bei dem G und K nicht-triviale Gruppen sind. (Eine triviale Gruppe ist eine Gruppe, die genau ein Element hat.)

Aufgabe 3.

Zeigen Sie, dass $|\operatorname{Sym}(X)| = m! = m(m-1)(m-2)\cdots 1$ gilt, falls |X| = m. Zeigen Sie weiter: für jedes $n \leq m$ gibt es in $\operatorname{Sym}(X)$ ein Element der Ordnung n.

[Hinweis zu Teil 1: Induktion nach m. Es genügt zu zeigen, dass es genau m! injektive Abbildungen $X \to X$ gibt – warum?]

Aufgabe 4.

Es sei Δ ein reguläres n-Eck in \mathbb{R}^2 (konvex, alle Seiten gleich lang, alle Innenwinkel gleich), für $n \geq 3$. Weiter sei G die Symmetriegruppe von Δ . Zeigen Sie:

- (a) |G| = 2n und G ist nicht abelsch.
- (b) G wird von einer Drehung α um $\frac{2\pi}{n}$ und einer Spiegelung erzeugt.
- (c) G wird von zwei geeignet gewählten Spiegelungen erzeugt.

*-Aufgabe 5.

Zeigen Sie: für jedes $n \geq 3$ gibt es eine Gruppe G mit einer Untergruppe H vom Index [G:H]=n, so dass H kein Normalteiler in G ist.

[Hinweis: Aufgabe 4.]