Endliche Gruppen Blatt 3

Abgabe: 06.11.2025, 08:00 in Briefkasten 5

Aufgabe 1.

Es seien G und K Gruppen und $f \colon G \to K$ eine Abbildung mit Graph

$$\Gamma = \{ (g, f(g)) \mid g \in G \} \subseteq G \times K.$$

Zeigen Sie:

- (i) Wenn f ein Homomorphismus ist, dann ist Γ eine Untergruppe von $G \times K$.
- (ii) Wenn $\Gamma \subseteq G \times K$ eine Untergruppe ist, dann ist f ein Homomorphismus.

Aufgabe 2.

Es sei E eine endliche Gruppe und $\mathbb Q$ die (additive) Gruppe der rationalen Zahlen. Zeigen Sie:

- (i) Jeder Homomorphismus $f: E \to \mathbb{Z}$ ist konstant.
- (ii) Jeder Homomorphismus $h: \mathbb{Q} \to \mathbb{Z}$ ist konstant.

Aufgabe 3.

Es sei G eine Gruppe und $i: G \to G$ die Abbildung $i(g) = g^{-1}$. Zeigen Sie, dass G genau dann abelsch ist, wenn i ein Homomorphismus ist.

Aufgabe 4.

Es sei $m \geq 1$ und G eine endliche Gruppe der Ordnung |G| = 2m. Zeigen Sie, dass G ein Element der Ordnung 2 enthält.

[Hinweis: Überlegen Sie, warum die Anzahl der Elemente g mit $g \neq g^{-1}$ gerade sein muss.]

*-Aufgabe 5.

Es seien $m,n\geq 1$ teilerfremde ganze Zahlen (ggt(m,n)=1). Zeigen Sie, dass die Gruppen $\mathbb{Z}/mn\mathbb{Z}$ und $\mathbb{Z}/m\mathbb{Z}\times\mathbb{Z}/n\mathbb{Z}$ isomorph sind.